IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p900-d1419278.html
   My bibliography  Save this article

The Contribution of Saline-Alkali Land to the Terrestrial Carbon Stock Balance: The Case of an Important Agriculture and Ecological Region in Northeast China

Author

Listed:
  • Lei Chang

    (College of Earth Sciences, Jilin University, Changchun 130061, China)

  • Tianhang Ju

    (College of Earth Sciences, Jilin University, Changchun 130061, China)

  • Huijia Liu

    (College of Earth Sciences, Jilin University, Changchun 130061, China)

  • Yuefen Li

    (College of Earth Sciences, Jilin University, Changchun 130061, China)

Abstract

Saline-alkali land is an important component of terrestrial ecosystems and may serve as a carbon sink but its net contribution to the overall terrestrial carbon sink is unknown. Using methods recommended by the IPCC, this study evaluates the impacts of interconverting saline-alkali and non-saline-alkali land on terrestrial carbon stocks by measuring two major carbon pools (soil organic carbon and vegetation carbon) in the saline-alkali land of China’s Songnen Plain. Distinct phases in the evolution of the region’s terrestrial carbon stock were delineated, factors contributing to transitions between phases were identified, and the effects of changes in the saline-alkali land carbon stock on the overall terrestrial carbon sink were estimated. Between 2005 and 2020, the region’s saline-alkali land carbon stock initially increased, then declined, and finally increased again. However, the overall terrestrial carbon stock decreased by 0.5 Tg (1 Tg = 10 12 g), indicating that the increase in the saline-alkali land carbon stock was due primarily to expansion of the saline-alkali land area. The conversion of non-saline-alkali land to saline-alkali land was a carbon-emitting process; consequently, in areas undergoing saline-alkali land change, the lower carbon density bound was equal to the carbon density of unconverted saline-alkali land and the upper bound was equal to the carbon density of unconverted non-saline-alkali land. In general, changes in the carbon stock of saline-alkali land correlated negatively with changes in the overall terrestrial carbon stock. The conversion of saline-alkali land into grassland and cropland through biochar improvement and the planting of saline-tolerant crops ( Leymus chinensis, salt-tolerant rice ) has a positive effect on promoting the enhancement of terrestrial carbon stocks.

Suggested Citation

  • Lei Chang & Tianhang Ju & Huijia Liu & Yuefen Li, 2024. "The Contribution of Saline-Alkali Land to the Terrestrial Carbon Stock Balance: The Case of an Important Agriculture and Ecological Region in Northeast China," Land, MDPI, vol. 13(7), pages 1-18, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:900-:d:1419278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Huicai & Wang, Huixiao & Fu, Guobin & Yan, Haiming & Zhao, Panpan & Ma, Meihong, 2017. "A modified soil water deficit index (MSWDI) for agricultural drought monitoring: Case study of Songnen Plain, China," Agricultural Water Management, Elsevier, vol. 194(C), pages 125-138.
    2. Chaopeng Hong & Jennifer A. Burney & Julia Pongratz & Julia E. M. S. Nabel & Nathaniel D. Mueller & Robert B. Jackson & Steven J. Davis, 2021. "Global and regional drivers of land-use emissions in 1961–2017," Nature, Nature, vol. 589(7843), pages 554-561, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Wei Pei & Cuizhu Tian & Qiang Fu & Yongtai Ren & Tianxiao Li, 2022. "Risk analysis and influencing factors of drought and flood disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1599-1620, February.
    4. Haoran Zhang & Limin Jiao & Cai Li & Zhongci Deng & Zhen Wang & Qiqi Jia & Xihong Lian & Yaolin Liu & Yuanchao Hu, 2024. "Global environmental impacts of food system from regional shock: Russia-Ukraine war as an example," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    5. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).
    6. Xiaohuan Xie & Haifeng Deng & Shengyuan Li & Zhonghua Gou, 2024. "Optimizing Land Use for Carbon Neutrality: Integrating Photovoltaic Development in Lingbao, Henan Province," Land, MDPI, vol. 13(1), pages 1-18, January.
    7. Mohammed Sanusi Shiru & Shamsuddin Shahid & Noraliani Alias & Eun-Sung Chung, 2018. "Trend Analysis of Droughts during Crop Growing Seasons of Nigeria," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
    8. Guste Metrikaityte & Jurate Suziedelyte Visockiene & Kestutis Papsys, 2022. "Digital Mapping of Land Cover Changes Using the Fusion of SAR and MSI Satellite Data," Land, MDPI, vol. 11(7), pages 1-20, July.
    9. Camila Bonilla-Cedrez & Peter Steward & Todd S. Rosenstock & Philip Thornton & Jacobo Arango & Martin Kropff & Julian Ramirez-Villegas, 2023. "Priority areas for investment in more sustainable and climate-resilient livestock systems," Nature Sustainability, Nature, vol. 6(10), pages 1279-1286, October.
    10. Julia Noë & Karl-Heinz Erb & Sarah Matej & Andreas Magerl & Manan Bhan & Simone Gingrich, 2021. "Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Shibao Lu & Yizi Shang & Hongbo Zhang, 2020. "Evaluation on Early Drought Warning System in the Jinghui Channel Irrigation Area," IJERPH, MDPI, vol. 17(1), pages 1-25, January.
    12. Zutao Ouyang & Pietro Sciusco & Tong Jiao & Sarah Feron & Cheyenne Lei & Fei Li & Ranjeet John & Peilei Fan & Xia Li & Christopher A. Williams & Guangzhao Chen & Chenghao Wang & Jiquan Chen, 2022. "Albedo changes caused by future urbanization contribute to global warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Shu Liu & Yong Wang & Guang J. Zhang & Linyi Wei & Bin Wang & Le Yu, 2022. "Contrasting influences of biogeophysical and biogeochemical impacts of historical land use on global economic inequality," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Yao, Ning & Li, Yi & Liu, Qingzhu & Zhang, Siyuan & Chen, Xinguo & Ji, Yadong & Liu, Fenggui & Pulatov, Alim & Feng, Puyu, 2022. "Response of wheat and maize growth-yields to meteorological and agricultural droughts based on standardized precipitation evapotranspiration indexes and soil moisture deficit indexes," Agricultural Water Management, Elsevier, vol. 266(C).
    15. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    16. Jian Li & Lingyan Jiang & Shuhua Zhang, 2024. "How Land Transfer Affects Agricultural Carbon Emissions: Evidence from China," Land, MDPI, vol. 13(9), pages 1-17, August.
    17. Jingxiu Qin & Weili Duan & Shan Zou & Yaning Chen & Wenjing Huang & Lorenzo Rosa, 2024. "Global energy use and carbon emissions from irrigated agriculture," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Lagerquist, Elsa & Vogeler, Iris & Kumar, Uttam & Bergkvist, Göran & Lana, Marcos & Watson, Christine A. & Parsons, David, 2024. "Assessing the effect of intercropped leguminous service crops on main crops and soil processes using APSIM NG," Agricultural Systems, Elsevier, vol. 216(C).
    19. Foyuan Kuang & Jiatong Li & Jianjun Jin & Xin Qiu, 2023. "Do Green Production Technologies Improve Household Income? Evidence from Rice Farmers in China," Land, MDPI, vol. 12(10), pages 1-15, September.
    20. Huang, Jing & Han, Wenjing & Zhang, Zhengfeng & Ning, Shanshan & Zhang, Xiaoling, 2024. "The decoupling relationship between land use efficiency and carbon emissions in China: An analysis using the Socio-Ecological Systems (SES) framework," Land Use Policy, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:900-:d:1419278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.