IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p1037-d1432598.html
   My bibliography  Save this article

Construction of Ecological Security Patterns and Evaluation of Ecological Network Stability under Multi-Scenario Simulation: A Case Study in Desert–Oasis Area of the Yellow River Basin, China

Author

Listed:
  • Wenhao Cheng

    (College of Urban and Environment Sciences, Northwest University, Xi’an 710127, China
    College of Geography and Planning, Ningxia University, No.539 Helanshan West Road, Yinchuan 750021, China)

  • Caihong Ma

    (College of Geography and Planning, Ningxia University, No.539 Helanshan West Road, Yinchuan 750021, China)

  • Tongsheng Li

    (College of Urban and Environment Sciences, Northwest University, Xi’an 710127, China)

  • Yuanyuan Liu

    (College of Geography and Planning, Ningxia University, No.539 Helanshan West Road, Yinchuan 750021, China)

Abstract

Land use change has a significant impact on the sustainability of ecosystems, and ecological security patterns (ESPs) can improve environmental quality through spatial planning. This study explored a multi-scenario ESP framework by integrating future land use simulation (FLUS) and minimum cumulative resistance (MCR) for urban agglomeration along the Yellow River Basin (YRB) in Ningxia. The research involved simulating land use change in 2035 under four development scenarios, identifying ecological security networks, and evaluating network stability for each scenario. The study revealed that the ecological sources under different development scenarios, including a natural development scenario (NDS), an economic development scenario (EDS), a food security scenario (FSS), and an ecological protection scenario (EPS), were 834.82 km 2 , 715.46 km 2 , 785.56 km 2 , and 1091.43 km 2 , respectively. The overall connectivity values ( O G ) for these scenarios were 0.351, 0.466, 0.334, and 0.520, respectively. It was found that under an EPS, the ESPs had the largest area of ecological sources and the most stable ecological network structure, which can effectively protect natural habitats. This study provides a valuable method for identifying ESPs that can respond to diversity and the uncertainty of future development. It can assist decision-makers in enhancing the ecological quality of the study area while considering various development scenarios.

Suggested Citation

  • Wenhao Cheng & Caihong Ma & Tongsheng Li & Yuanyuan Liu, 2024. "Construction of Ecological Security Patterns and Evaluation of Ecological Network Stability under Multi-Scenario Simulation: A Case Study in Desert–Oasis Area of the Yellow River Basin, China," Land, MDPI, vol. 13(7), pages 1-19, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1037-:d:1432598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/1037/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/1037/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Men, Dan & Pan, Jinghu, 2023. "Ecological network identification and connectivity robustness evaluation in the Yellow River Basin under a multi-scenario simulation," Ecological Modelling, Elsevier, vol. 482(C).
    2. Mao, Hui & Zhou, Li & Ying, RuiYao & Pan, Dan, 2021. "Time Preferences and green agricultural technology adoption: Field evidence from rice farmers in China," Land Use Policy, Elsevier, vol. 109(C).
    3. Guoqing Chen & Saifei Wang, 2023. "Evaluation of Urban Resource Environmental Carrying Capacity and Land Spatial Development Suitability in a Semiarid Area of the Yellow River Basin," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    4. Upadhyay, Shashankaditya & Roy, Arijit & Ramprakash, M. & Idiculla, Jobin & Kumar, A. Senthil & Bhattacharya, Sudeepto, 2017. "A network theoretic study of ecological connectivity in Western Himalayas," Ecological Modelling, Elsevier, vol. 359(C), pages 246-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuo Li & Jiachen Liu & Rongqiang Ma & Wenhui Xie & Xiaoyu Zhao & Zhaohai Wang & Baolei Zhang & Le Yin, 2024. "Construction of Ecological Security Pattern Based on Ecosystem Services, Sensitivity, Connectivity, and Resistance—A Case Study in the Huang-Huai-Hai Plain," Land, MDPI, vol. 13(12), pages 1-18, December.
    2. Wenhao Cheng & Caihong Ma, 2024. "Construction and Evaluation of Urban Green Infrastructure in Ecologically Vulnerable Areas Based on Multi-Scale and Multi-Objective Approaches: Taking the Four-Lake Hydrographic Network in the Upper Y," Land, MDPI, vol. 13(12), pages 1-18, December.
    3. Longjiang Zhang & Guoping Chen & Junsan Zhao & Yilin Lin & Haibo Yang & Jianhua He, 2025. "Spatiotemporal Characteristics and Scale Effects of Ecosystem Service Bundles in the Xijiang River Basin: Implications for Territorial Spatial Planning and Sustainable Land Management," Sustainability, MDPI, vol. 17(5), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenhao Cheng & Caihong Ma, 2024. "Construction and Evaluation of Urban Green Infrastructure in Ecologically Vulnerable Areas Based on Multi-Scale and Multi-Objective Approaches: Taking the Four-Lake Hydrographic Network in the Upper Y," Land, MDPI, vol. 13(12), pages 1-18, December.
    2. Qianchun Dai & Kequn Cheng, 2022. "What Drives the Adoption of Agricultural Green Production Technologies? An Extension of TAM in Agriculture," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    3. Bingbing Huang & Hui Kong & Jinhong Yu & Xiaoyou Zhang, 2022. "A Study on the Impact of Low-Carbon Technology Application in Agriculture on the Returns of Large-Scale Farmers," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    4. Upadhyay, Shashankaditya & Banerjee, Anirban & Panigrahi, Prasanta K., 2020. "Causal evolution of global crisis in financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    5. Xiaojing Li & Xianli Xia & Jiazhen Ren, 2022. "Can the Participation in Quality Certification of Agricultural Products Drive the Green Production Transition?," IJERPH, MDPI, vol. 19(17), pages 1-16, September.
    6. Wu, Haixia & Ge, Yan & Li, Jianping, 2023. "Uncertainty, time preference and households’ adoption of rooftop photovoltaic technology," Energy, Elsevier, vol. 276(C).
    7. Guoping Chen & Xiaohui Long & Chuntong Wu & Junsan Zhao, 2024. "Urban Spatial Pattern Optimization Based on “Double Evaluation”: A Case Study of Urban Agglomeration in Central Yunnan, China," Sustainability, MDPI, vol. 16(24), pages 1-25, December.
    8. Jutao Zeng & Jie Lyu, 2023. "Simultaneous Decisions to Undertake Off-Farm Work and Straw Return: The Role of Cognitive Ability," Land, MDPI, vol. 12(8), pages 1-21, August.
    9. Wei, Zhongyong & Liu, Tao & Liang, Huaixiang & Zhang, Zhe & Wang, Chunhui & Lv, Yadong & Sun, Jizhe & Wang, Qi, 2024. "Uncovering the impacts of LUCC on ecological connectivity in suburban open-pit mining concentration areas: A pattern collection of changing relationships between ecological resistance and ecological n," Ecological Modelling, Elsevier, vol. 496(C).
    10. repec:ags:aaea22:335541 is not listed on IDEAS
    11. Yuying Liu & Kaiyao Shi & Ziqi Liu & Ling Qiu & Yan Wang & Hao Liu & Xinhong Fu, 2022. "The Effect of Technical Training Provided by Agricultural Cooperatives on Farmers’ Adoption of Organic Fertilizers in China: Based on the Mediation Role of Ability and Perception," IJERPH, MDPI, vol. 19(21), pages 1-20, November.
    12. Yunlong Sui & Qiang Gao, 2023. "Farmers’ Endowments, Technology Perception and Green Production Technology Adoption Behavior," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    13. Jianfeng Zhu & Lijun Yu & Yueping Nie & Fang Liu & Yu Sun & Yuanzhi Zhang & Wenping Song, 2019. "Ancient Environmental Preference and the Site Selection Pattern Based on the Edge Effect and Network Structure in An Ecosystem," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    14. Mingyue Li & Yu Liu & Yuhe Huang & Lianbei Wu & Kai Chen, 2022. "Impacts of Risk Perception and Environmental Regulation on Farmers’ Sustainable Behaviors of Agricultural Green Production in China," Agriculture, MDPI, vol. 12(6), pages 1-20, June.
    15. Pan, Huanhuan & Du, Ziqiang & Wu, Zhitao & Zhang, Hong & Ma, Keming, 2024. "Building ecosystem services-based ecological networks in energy and chemical industry areas," Ecological Modelling, Elsevier, vol. 498(C).
    16. Guan, Lijun & Huang, Zuhui & Jin, Shaosheng, 2022. "Time preference and nutrition label use: Evidence from China," Economics & Human Biology, Elsevier, vol. 47(C).
    17. Xiaoxuan Chen & Tongshan Liu, 2023. "Can Agricultural Socialized Services Promote the Reduction in Chemical Fertilizer? Analysis Based on the Moderating Effect of Farm Size," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    18. Pengfei Ge & Tan Liu & Xiaoxu Wu & Xiulu Huang, 2023. "Heterogenous Urbanization and Agricultural Green Development Efficiency: Evidence from China," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    19. repec:ags:aaea22:335494 is not listed on IDEAS
    20. Linling Geng & Li Zhou & Yifeng Zhang, 2023. "Analysis of Three-Way Game of Straw Return System under the Green Transformation of Agriculture," IJERPH, MDPI, vol. 20(5), pages 1-16, March.
    21. Yuying Liu & Rubin Chen & Yufan Chen & Tinglei Yu & Xinhong Fu, 2024. "Impact of the degree of agricultural green production technology adoption on income: evidence from Sichuan citrus growers," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    22. Linwei Wang & Yixin Hu & Rong Kong, 2023. "The Impact of Bancassurance Interaction on the Adoption Behavior of Green Production Technology in Family Farms: Evidence from China," Land, MDPI, vol. 12(5), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1037-:d:1432598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.