IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2066-d1534421.html
   My bibliography  Save this article

Assessing and Predicting Spatiotemporal Alterations in Land-Use Carbon Emission and Its Implications to Carbon-Neutrality Target: A Case Study of Beijing-Tianjin-Hebei Region

Author

Listed:
  • Weitong Lv

    (School of Architecture, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Yongqing Xie

    (School of Architecture, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Peng Zeng

    (School of Architecture, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China)

Abstract

Optimizing land use and management are pivotal for mitigating land use-related carbon emissions. Current studies are less focused on the influence of development policies and spatial planning on carbon emissions from land use. This research employs the future land use simulation (FLUS) model to project land-use alterations under the business-as-usual (BAU) and low-carbon ecological security (LCES) scenarios. It assesses and predicts spatiotemporal characteristics of land-use carbon emissions in the Beijing-Tianjin-Hebei (BTH) region across urban agglomerations, cities, counties, and grids from 2000 to 2030. The influence of low-carbon policy is assessed by comparing the land-use carbon emissions between scenarios. The findings demonstrate that: (1) Urban agglomeration-wise, Beijing’s land-use carbon emissions and intensities peaked and declined, while Tianjin and Hebei’s continued to rise. (2) City-wise, central urban areas generally have higher carbon emissions intensities than non-central areas. (3) County-wise, in 2030, high carbon-intensity counties cluster near development axes. Still, the BAU scenario has a larger carbon emission intensity and a greater range of higher intensities. (4) Grid-wise, in 2030, the BAU scenario shows a clear substitution of heavy carbon emission zones for medium ones, and the LCES scenario shows a clear substitution of carbon sequestration zones for light carbon emission zones. Our methodology and findings can optimize spatial planning and carbon reduction policies in the BTH urban agglomeration and similar contexts.

Suggested Citation

  • Weitong Lv & Yongqing Xie & Peng Zeng, 2024. "Assessing and Predicting Spatiotemporal Alterations in Land-Use Carbon Emission and Its Implications to Carbon-Neutrality Target: A Case Study of Beijing-Tianjin-Hebei Region," Land, MDPI, vol. 13(12), pages 1-22, December.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2066-:d:1534421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).
    2. Bell, E. J. & Hinojosa, R. C., 1977. "Markov analysis of land use change: Continuous time and stationary processes," Socio-Economic Planning Sciences, Elsevier, vol. 11(1), pages 13-17.
    3. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    4. Xingang Fan & Zhuguo Ma & Qing Yang & Yunhuan Han & Rezaul Mahmood, 2015. "Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part II: interrelationship from observations," Climatic Change, Springer, vol. 129(3), pages 441-455, April.
    5. Xingang Fan & Zhuguo Ma & Qing Yang & Yunhuan Han & Rezaul Mahmood & Ziyan Zheng, 2015. "Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part I: observational evidence," Climatic Change, Springer, vol. 129(3), pages 427-440, April.
    6. Chenchen Shi & Xiaoping Zhu & Haowei Wu & Zhihui Li, 2022. "Urbanization Impact on Regional Sustainable Development: Through the Lens of Urban-Rural Resilience," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngo Thanh Son & Hoang Huong & Nguyen Duc Loc & Tran Trong Phuong, 2022. "Application of SWAT model to assess land use change and climate variability impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3091-3109, March.
    2. Qinghui Wang & Yu Peng & Min Fan & Zheng Zhang & Qingtong Cui, 2018. "Landscape Patterns Affect Precipitation Differing across Sub-climatic Regions," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    3. Lei Tian & Jiming Jin & Pute Wu & Guo-yue Niu, 2018. "Assessment of the Effects of Climate Change on Evapotranspiration with an Improved Elasticity Method in a Nonhumid Area," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    4. Yanhua Zhao & De Su & Yang Bao & Wei Yang & Yibo Sun, 2022. "A CLUMondo Model-Based Multi-Scenario Land-Use Change Simulation in the Yangtze River Delta Urban Agglomeration, China," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    5. Jieming Chou & Yidan Hao & Yuan Xu & Weixing Zhao & Yuanmeng Li & Haofeng Jin, 2023. "Forest Carbon Sequestration Potential in China under Different SSP-RCP Scenarios," Sustainability, MDPI, vol. 15(9), pages 1-12, April.
    6. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    7. Xinba Li & Weidong Li & Chuanrong Zhang, 2024. "Time-Lag Transiograms and Their Implications for Landscape Change Characterization," Stats, MDPI, vol. 7(4), pages 1-19, December.
    8. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    9. Jiali He & Xiangfei Liu & Xuetong Wang & Xueyang Li & Linger Yu & Beibei Niu, 2024. "Spatiotemporal Evolution of Territorial Spaces and Its Effect on Carbon Emissions in Qingdao City, China," Land, MDPI, vol. 13(10), pages 1-22, October.
    10. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    11. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    12. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    13. Pedro Bueno Rocha Campos & Cláudia Maria de Almeida & Alfredo Pereira de Queiroz, 2022. "Spatial Dynamic Models for Assessing the Impact of Public Policies: The Case of Unified Educational Centers in the Periphery of São Paulo City," Land, MDPI, vol. 11(6), pages 1-25, June.
    14. Qi Fu & Mengfan Gao & Yue Wang & Tinghui Wang & Xu Bi & Jinhua Chen, 2022. "Spatiotemporal Patterns and Drivers of the Carbon Budget in the Yangtze River Delta Region, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    15. Jin, Ming & Han, Xulong & Li, Mingyu, 2023. "Trade-offs of multiple urban ecosystem services based on land-use scenarios in the Tumen River cross-border area," Ecological Modelling, Elsevier, vol. 482(C).
    16. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    17. Guo, Wei & Lv, Ling & Zhao, Xuesheng & Cui, Ximin & Rienow, Andreas, 2024. "Multiscale coupled development and linkage response evaluation of China's carbon neutrality and sustainable development capability–A quantitative analysis perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    18. Rizaldi Boer & Upik Wasrin & Perdinan & Hendri & Bambang Dasanto & Willy Makundi & Julius Hero & M. Ridwan & Nur Masripatin, 2007. "Assessment of carbon leakage in multiple carbon-sink projects: a case study in Jambi Province, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(6), pages 1169-1188, July.
    19. Michael Iacono & David Levinson & Ahmed El-Geneidy & Rania Wasfi, 2012. "Markov Chain Model of Land Use Change in the Twin Cities," Working Papers 000107, University of Minnesota: Nexus Research Group.
    20. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2066-:d:1534421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.