IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7275-d1134333.html
   My bibliography  Save this article

Forest Carbon Sequestration Potential in China under Different SSP-RCP Scenarios

Author

Listed:
  • Jieming Chou

    (Key Laboratory of Environmental Change and Natural Disaster, MOE, Beijing Normal University, Beijing 100875, China
    State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    Institute of Disaster Risk Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China)

  • Yidan Hao

    (Key Laboratory of Environmental Change and Natural Disaster, MOE, Beijing Normal University, Beijing 100875, China
    State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    Institute of Disaster Risk Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Yuan Xu

    (Key Laboratory of Environmental Change and Natural Disaster, MOE, Beijing Normal University, Beijing 100875, China
    State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    Institute of Disaster Risk Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Weixing Zhao

    (Key Laboratory of Environmental Change and Natural Disaster, MOE, Beijing Normal University, Beijing 100875, China
    State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    Institute of Disaster Risk Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Yuanmeng Li

    (Key Laboratory of Environmental Change and Natural Disaster, MOE, Beijing Normal University, Beijing 100875, China
    State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    Institute of Disaster Risk Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Haofeng Jin

    (Key Laboratory of Environmental Change and Natural Disaster, MOE, Beijing Normal University, Beijing 100875, China
    State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    Institute of Disaster Risk Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

Abstract

The estimation of forest carbon sequestration and its economic value as a carbon sink are important elements of global carbon cycle research. In this study, based on the predicted forestland changes under the future shared socioeconomic pathways SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5, the growth equations of different tree species were fitted using forest inventory data, and the biomass conversion factor continuum function method was used to estimate forest vegetation carbon fixation at the national scale. The carbon sink potential of the forest ecosystems in 2020–2100 was estimated under the three scenarios. Under the three social scenarios, the fixed amount of forest carbon in China exhibits a significant upward trend. Forest area increases the most, and carbon sequestration increases the most rapidly under SSP1-RCP2.6. The carbon sequestration level in Southwest China is higher than in other parts of the country, and those in Northwest and East China are lower than the national average. In order to continuously improve the carbon sequestration capacity of terrestrial ecosystem resources in China, the following actions are recommended: strengthen the protection projects of natural forests in various regions, improve the level of forest management, and gradually achieve the goal of carbon neutrality in China.

Suggested Citation

  • Jieming Chou & Yidan Hao & Yuan Xu & Weixing Zhao & Yuanmeng Li & Haofeng Jin, 2023. "Forest Carbon Sequestration Potential in China under Different SSP-RCP Scenarios," Sustainability, MDPI, vol. 15(9), pages 1-12, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7275-:d:1134333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Boqiang & Ge, Jiamin, 2021. "Does institutional freedom matter for global forest carbon sinks in the face of economic development disparity?," China Economic Review, Elsevier, vol. 65(C).
    2. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    3. Jiangnan Li & Jieming Chou & Weixing Zhao & Yuan Xu & Yidan Hao & Yuanmeng Li, 2022. "Future Drought and Flood Vulnerability and Risk Prediction of China’s Agroecosystem under Climate Change," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    4. Jing CAO, 2010. "Reconciling Economic Growth and Carbon Mitigation: Challenges and Policy Options in China," Asian Economic Policy Review, Japan Center for Economic Research, vol. 5(1), pages 110-129, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Liu & Ruirui Wang & Wei Shi & Xiaoyan Wang & Yaoyao Yang, 2024. "Research on Estimation Model of Carbon Stock Based on Airborne LiDAR and Feature Screening," Sustainability, MDPI, vol. 16(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    2. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    3. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    4. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    5. Guangyue Xu & Peter Schwarz & Xiaojing Shi & Nathan Duma, 2023. "Scenario Paths of Developing Forest Carbon Sinks for China to Achieve Carbon Neutrality," Land, MDPI, vol. 12(7), pages 1-19, June.
    6. Jonas Rapsikevicius & Jurgita Bruneckiene & Mantas Lukauskas & Sarunas Mikalonis, 2021. "The Impact of Economic Freedom on Economic and Environmental Performance: Evidence from European Countries," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    7. Qi Fu & Mengfan Gao & Yue Wang & Tinghui Wang & Xu Bi & Jinhua Chen, 2022. "Spatiotemporal Patterns and Drivers of the Carbon Budget in the Yangtze River Delta Region, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    8. Jin, Ming & Han, Xulong & Li, Mingyu, 2023. "Trade-offs of multiple urban ecosystem services based on land-use scenarios in the Tumen River cross-border area," Ecological Modelling, Elsevier, vol. 482(C).
    9. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    10. Guo, Wei & Lv, Ling & Zhao, Xuesheng & Cui, Ximin & Rienow, Andreas, 2024. "Multiscale coupled development and linkage response evaluation of China's carbon neutrality and sustainable development capability–A quantitative analysis perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    11. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    12. Youngsu Park & Yujun Sun, 2018. "Sustainable Forest Management in North-East Asia: A Comparative Assessment between China and Republic of Korea," International Journal of Sciences, Office ijSciences, vol. 7(04), pages 102-114, April.
    13. Zhang, Fan & Li, Changsheng & Wang, Zheng & Glidden, Stanley & Grogan, Danielle S. & Li, Xuxiang & Cheng, Yan & Frolking, Steve, 2015. "Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981–2000," Ecological Modelling, Elsevier, vol. 312(C), pages 1-10.
    14. Paul J. Burke, 2014. "Green Pricing in the Asia Pacific: An Idea Whose Time Has Come?," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 1(3), pages 561-575, September.
    15. Mingjie Tian & Zhun Chen & Wei Wang & Taizheng Chen & Haiying Cui, 2022. "Land-Use Carbon Emissions in the Yellow River Basin from 2000 to 2020: Spatio-Temporal Patterns and Driving Mechanisms," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    16. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    17. Cong Zhang & Xiaojun Yao & Guoyu Wang & Huian Jin & Te Sha & Xinde Chu & Juan Zhang & Juan Cao, 2022. "Temporal and Spatial Variation of Land Use and Vegetation in the Three–North Shelter Forest Program Area from 2000 to 2020," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    18. Zhencheng Xing & Yanyan Ma & Lan Luo & Haikun Wang, 2024. "Harmonizing economies and ecologies: Towards an equitable provincial carbon quota allocation for China’s peak emissions," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    19. Yunxiu Ma & Zhanjun Xu, 2023. "Construction of Low-Carbon Land Use and Management System in Coal Mining Areas," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    20. Decheng Zhou & Lu Hao & John B. Kim & Peilong Liu & Cen Pan & Yongqiang Liu & Ge Sun, 2019. "Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau," Climatic Change, Springer, vol. 156(1), pages 31-50, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7275-:d:1134333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.