IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i10p1548-d1484647.html
   My bibliography  Save this article

Combining Photovoltaics with the Rewetting of Peatlands—A SWOT Analysis of an Innovative Land Use for the Case of North-East Germany

Author

Listed:
  • Melissa Seidel

    (Faculty of Law and Economics & Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, D-17489 Greifswald, Germany)

  • Sabine Wichmann

    (Faculty of Law and Economics & Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, D-17489 Greifswald, Germany)

  • Carl Pump

    (Faculty of Law and Economics & Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, D-17489 Greifswald, Germany)

  • Volker Beckmann

    (Faculty of Law and Economics & Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, D-17489 Greifswald, Germany)

Abstract

Reducing emissions from energy production and enhancing the capacity of land use systems to store carbon are both important pathways towards greenhouse gas neutrality. Expanding photovoltaics (PV) contributes to the former, while the rewetting of drained peatlands preserves the peat soil as long-term carbon store, thus contributing to the latter. However, both options are usually considered separately. This study analyses Peatland PV, defined as the combination of open-space PV with the rewetting of peatlands on the same site, and has an explorative and field-defining character. Due to a lack of empirical data, we used expert interviews to identify the strengths and weaknesses, opportunities, and threats of Peatland PV in the sparsely populated and peatland-rich state of Mecklenburg-Western Pomerania in North-East Germany. The material was analysed using a qualitative content analysis and compiled into SWOT and TOWS matrices. Besides the ecological and technological dimensions, this study focuses on the economic and legal framework in Germany. We found that Peatland PV may mitigate land use conflicts by contributing to climate and restoration targets, energy self-sufficiency, and security. Continued value creation can incentivize landowners to agree to peatland rewetting. Technical feasibility has, however, a significant influence on the profitability and thus the prospects of Peatland PV. Although Peatland PV has recently been included in the Renewable Energy Sources Act (EEG), several specialised legal regulations still need to be adapted to ensure legal certainty for all stakeholders. Pilot implementation projects are required to study effects on vegetation cover, soil, peatland ecosystem services, biodiversity, hydrology, and water management, as well as to analyse the feasibility and profitability of Peatland PV.

Suggested Citation

  • Melissa Seidel & Sabine Wichmann & Carl Pump & Volker Beckmann, 2024. "Combining Photovoltaics with the Rewetting of Peatlands—A SWOT Analysis of an Innovative Land Use for the Case of North-East Germany," Land, MDPI, vol. 13(10), pages 1-31, September.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1548-:d:1484647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/10/1548/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/10/1548/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Unger & Tobia Lakes, 2023. "Land Use Conflicts and Synergies on Agricultural Land in Brandenburg, Germany," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
    2. Solomon E. Uhunamure & Karabo Shale, 2021. "A SWOT Analysis Approach for a Sustainable Transition to Renewable Energy in South Africa," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    3. Stephanie Roe & Charlotte Streck & Michael Obersteiner & Stefan Frank & Bronson Griscom & Laurent Drouet & Oliver Fricko & Mykola Gusti & Nancy Harris & Tomoko Hasegawa & Zeke Hausfather & Petr Havlík, 2019. "Contribution of the land sector to a 1.5 °C world," Nature Climate Change, Nature, vol. 9(11), pages 817-828, November.
    4. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Mukumba & Shylet Y. Chivanga, 2023. "An Overview of Renewable Energy Technologies in the Eastern Cape Province in South Africa and the Rural Households’ Energy Poverty Coping Strategies," Challenges, MDPI, vol. 14(1), pages 1-12, March.
    2. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    3. Li-chen Zhang & Zheng-ai Dong & Zhi-xiong Tan & Jia-hui Luo & De-kui Yan, 2024. "Institutional Performance and Carbon Reduction Effect of High-Quality Development of New Energy: China’s Experience and Policy Implication," Sustainability, MDPI, vol. 16(16), pages 1-26, August.
    4. Susan C. Cook-Patton & C. Ronnie Drever & Bronson W. Griscom & Kelley Hamrick & Hamilton Hardman & Timm Kroeger & Pablo Pacheco & Shyla Raghav & Martha Stevenson & Chris Webb & Samantha Yeo & Peter W., 2021. "Protect, manage and then restore lands for climate mitigation," Nature Climate Change, Nature, vol. 11(12), pages 1027-1034, December.
    5. Maier, Rachel & Lütz, Luna & Risch, Stanley & Kullmann, Felix & Weinand, Jann & Stolten, Detlef, 2024. "Potential of floating, parking, and agri photovoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    6. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Amalia Suryani & Alberto Bezama & Claudia Mair-Bauernfeind & Macben Makenzi & Daniela Thrän, 2022. "Drivers and Barriers to Substituting Firewood with Biomass Briquettes in the Kenyan Tea Industry," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    8. Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
    9. Yukun Cao & Jingxuan Cai & Xiangyue Liu, 2024. "RETRACTED ARTICLE: Advancing toward a sustainable future: assessing the impact of energy transition, circular economy, and international trade on carbon footprint," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-26, April.
    10. Elias Hurmekoski & Juulia Suuronen & Lassi Ahlvik & Janni Kunttu & Tanja Myllyviita, 2022. "Substitution impacts of wood‐based textile fibers: Influence of market assumptions," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1564-1577, August.
    11. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    12. Meng, Fanting, 2024. "Driving sustainable development: Fiscal policy and the promotion of natural resource efficiency," Resources Policy, Elsevier, vol. 90(C).
    13. Maria Meirelles & Fernanda Carvalho & João Porteiro & Diamantino Henriques & Patrícia Navarro & Helena Vasconcelos, 2022. "Climate Change and Impact on Renewable Energies in the Azores Strategic Visions for Sustainability," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    14. Renata Dagiliūtė & Vaiva Kazanavičiūtė, 2024. "Impact of Land-Use Changes on Climate Change Mitigation Goals: The Case of Lithuania," Land, MDPI, vol. 13(2), pages 1-16, January.
    15. Mpho Sam Nkambule & Ali N. Hasan & Thokozani Shongwe, 2023. "Performance and Techno-Economic Analysis of Optimal Hybrid Renewable Energy Systems for the Mining Industry in South Africa," Sustainability, MDPI, vol. 15(24), pages 1-40, December.
    16. Liu, Dayong, 2023. "Does green finance and natural resources agglomeration have potential for green economic growth? Evidence from Asian perspective," Resources Policy, Elsevier, vol. 84(C).
    17. Chao Yue & Mengyang Xu & Philippe Ciais & Shu Tao & Huizhong Shen & Jinfeng Chang & Wei Li & Lei Deng & Junhao He & Yi Leng & Yu Li & Jiaming Wang & Can Xu & Han Zhang & Pengyi Zhang & Liankai Zhang &, 2024. "Contributions of ecological restoration policies to China’s land carbon balance," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Reitumetse Ngcobo & Milan Christian De Wet, 2024. "The Impact of Financial Development and Economic Growth on Renewable Energy Supply in South Africa," Sustainability, MDPI, vol. 16(6), pages 1-24, March.
    20. Feng, Chao & Liu, Yu-Qi & Yang, Jun, 2024. "Do energy trade patterns affect renewable energy development? The threshold role of digital economy and economic freedom," Technological Forecasting and Social Change, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1548-:d:1484647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.