IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4546-d1086845.html
   My bibliography  Save this article

Land Use Conflicts and Synergies on Agricultural Land in Brandenburg, Germany

Author

Listed:
  • Martin Unger

    (Geography Department, Applied Geoinformation Science Lab, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
    Ministry of Agriculture, Environment and Climate Protection of Brandenburg, 14467 Potsdam, Germany)

  • Tobia Lakes

    (Geography Department, Applied Geoinformation Science Lab, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
    Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, 10099 Berlin, Germany)

Abstract

The growing and multiple interests in land as a resource has led to an increase in locally or regionally clashing land use interests on agricultural land which may result in conflicts or open up possibilities for synergies. Urbanization, food production, renewable energy production, environmental protection, and climate protection are known as key land use interests in many regions. The objective of our study is to identify and map land use conflicts, land use synergies, and areas with land use synergy potentials in the federal state of Brandenburg, Germany. We have combined different methods: an analysis of statistical data, an online survey with farmers, a primary document analysis (articles, court documents, policy documents, position papers), and a GIS-based spatial analysis. In our Brandenburg case study, we have identified the use of agricultural land for renewable energy production and environmental protection as the most relevant land use interests leading to conflict situations. We show that land use synergies can make a significant contribution to achieving environmental and climate protection goals, as well as sustainable development. Through the site-adapted and targeted establishment of agroforestry systems, agricultural areas with agri-photovoltaic systems and agricultural parcels with integrated nonproductive areas may lead to land use synergies. Our study contributes to a better understanding of the occurrence of land use conflicts and land use synergies. We highlight the potential for targeted and sustainable environmental and climate protection through the promotion of land use synergies as a result of establishing agroforestry systems and agricultural parcels with agri-photovoltaic systems and integrated nonproductive areas. Our results provide a basis for agricultural policy to promote land use systems that contribute to environmental and climate protection.

Suggested Citation

  • Martin Unger & Tobia Lakes, 2023. "Land Use Conflicts and Synergies on Agricultural Land in Brandenburg, Germany," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4546-:d:1086845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mosquera-Losada, M.R. & Santiago-Freijanes, J.J. & Rois-Díaz, M. & Moreno, G. & den Herder, M. & Aldrey-Vázquez, J.A. & Ferreiro-Domínguez, N. & Pantera, A. & Pisanelli, A. & Rigueiro-Rodríguez, A., 2018. "Agroforestry in Europe: A land management policy tool to combat climate change," Land Use Policy, Elsevier, vol. 78(C), pages 603-613.
    2. Yang Zhang & Yanfang Liu & Yan Zhang & Xuesong Kong & Ying Jing & Enxiang Cai & Lingyu Zhang & Yi Liu & Zhengyu Wang & Yaolin Liu, 2019. "Spatial Patterns and Driving Forces of Conflicts among the Three Land Management Red Lines in China: A Case Study of the Wuhan Urban Development Area," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    3. Krystyna Stave, 2010. "Participatory System Dynamics Modeling for Sustainable Environmental Management: Observations from Four Cases," Sustainability, MDPI, vol. 2(9), pages 1-23, September.
    4. Arnold, Stephan & Lucas, Christian & Pauly, Ralf, 2020. "Der neue Nutzungsartenkatalog zur Erweiterten Tatsächlichen Nutzung in der amtlichen Flächenstatistik," WISTA – Wirtschaft und Statistik, Statistisches Bundesamt (Destatis), Wiesbaden, vol. 72(1), pages 44-56.
    5. Charabi, Yassine & Gastli, Adel, 2011. "PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation," Renewable Energy, Elsevier, vol. 36(9), pages 2554-2561.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melissa Seidel & Sabine Wichmann & Carl Pump & Volker Beckmann, 2024. "Combining Photovoltaics with the Rewetting of Peatlands—A SWOT Analysis of an Innovative Land Use for the Case of North-East Germany," Land, MDPI, vol. 13(10), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    2. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    3. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    4. Mosquera-Losada, María Rosa & Rodríguez-Rigueiro, Francico Javier & Santiago-Freijanes, José Javier & Rigueiro-Rodríguez, Antonio & Silva-Losada, Pablo & Pantera, Anastasia & Fernández-Lorenzo, Juan L, 2022. "European agroforestry policy promotion in arable Mediterranean areas," Land Use Policy, Elsevier, vol. 120(C).
    5. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    6. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    7. Michele Preziosi & Roberto Merli & Mara D’Amico, 2016. "Why Companies Do Not Renew Their EMAS Registration? An Exploratory Research," Sustainability, MDPI, vol. 8(2), pages 1-11, February.
    8. Mariana Vallejo & M. Isabel Ramírez & Alejandro Reyes-González & Jairo G. López-Sánchez & Alejandro Casas, 2019. "Agroforestry Systems of the Tehuacán-Cuicatlán Valley: Land Use for Biocultural Diversity Conservation," Land, MDPI, vol. 8(2), pages 1-16, January.
    9. Salim, H.K. & Stewart, R.A. & Sahin, O. & Dudley, M., 2020. "Systems approach to end-of-life management of residential photovoltaic panels and battery energy storage system in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
    11. Yanru Zhao & Xiaomin Zhao & Xinyi Huang & Jiaxin Guo & Guohui Chen, 2022. "Identifying a Period of Spatial Land Use Conflicts and Their Driving Forces in the Pearl River Delta," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    12. Charabi, Yassine & Gastli, Adel, 2012. "Spatio-temporal assessment of dust risk maps for solar energy systems using proxy data," Renewable Energy, Elsevier, vol. 44(C), pages 23-31.
    13. Sijia Li & Meichen Fu & Yi Tian & Yuqing Xiong & Cankun Wei, 2022. "Relationship between Urban Land Use Efficiency and Economic Development Level in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(7), pages 1-18, June.
    14. Yılmaz, Kutay & Dinçer, Ali Ersin & Ayhan, Elif N., 2023. "Exploring flood and erosion risk indices for optimal solar PV site selection and assessing the influence of topographic resolution," Renewable Energy, Elsevier, vol. 216(C).
    15. Datta, Pritha & Behera, Bhagirath & Rahut, Dil Bahadur, 2024. "India's approach to agroforestry as an effective strategy in the context of climate change: An evaluation of 28 state climate change action plans," Agricultural Systems, Elsevier, vol. 214(C).
    16. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    17. Janne von Seggern, 2020. "Understandings, Practices and Human-Environment Relationships—A Meta-Ethnographic Analysis of Local and Indigenous Climate Change Adaptation and Mitigation Strategies in Selected Pacific Island States," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    18. Paulo Antônio Xavier Furtado & Antônio Vanderley Herrero Sola, 2020. "Fuzzy Complex Proportional Assessment Applied in Location Selection for Installation of Photovoltaic Plants," Energies, MDPI, vol. 13(23), pages 1-20, November.
    19. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    20. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4546-:d:1086845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.