IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i6p1210-d1168338.html
   My bibliography  Save this article

Impervious Surface Mapping Based on Remote Sensing and an Optimized Coupled Model: The Dianchi Basin as an Example

Author

Listed:
  • Yimin Li

    (School of Earth Sciences, Yunnan University, Kunming 650091, China
    Yunnan Provincial University Domestic High Score Satellite Remote Sensing Geological Engineering Research Center, Kunming 650091, China
    These authors contributed equally to this work.)

  • Xue Yang

    (School of Earth Sciences, Yunnan University, Kunming 650091, China
    These authors contributed equally to this work.)

  • Bowen Wu

    (School of Earth Sciences, Yunnan University, Kunming 650091, China)

  • Juanzhen Zhao

    (Institute of International Rivers and Ecological Security, Yunnan University, Kunming 650091, China)

  • Xuanlun Deng

    (School of Earth Sciences, Yunnan University, Kunming 650091, China)

Abstract

Accurately extracting impervious surfaces (IS) and continuously monitoring their dynamics are crucial practices for promoting sustainable development in regional ecological environments and resources. In this context, we conducted experiments to extract IS of the Dianchi Lake Basin by utilizing various features extracted from remote sensing images and applying three different machine learning algorithms. Through this process, we obtained the optimal combination of features and a machine learning algorithm. Utilizing this model, our objective is to map the evolution of IS in the Dianchi Lake Basin, from 2000 to 2022, and analyze its dynamic changes. Our results showed the following: (1) The optimal model for IS extraction in the Dianchi Lake Basin was IMG-SPESVM based on the support vector machine, remote sensing images, and spectral features. (2) From 2000 to 2022, the spatial distribution and shape of the IS in the Dianchi Lake Basin changed significantly, but they all developed in the area around Dianchi Lake. (3) From 2000 to 2015, the rate of expansion of IS gradually accelerated, while from 2015 to 2022, it contracted. (4) From 2000 to 2022, the center of mass of IS moved to the northeast, and the standard deviation ellipse shifted greatly in the south–north direction. (5) Natural factors negatively affected the expansion of IS, while social factors positively affected the distribution of the IS.

Suggested Citation

  • Yimin Li & Xue Yang & Bowen Wu & Juanzhen Zhao & Xuanlun Deng, 2023. "Impervious Surface Mapping Based on Remote Sensing and an Optimized Coupled Model: The Dianchi Basin as an Example," Land, MDPI, vol. 12(6), pages 1-26, June.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:6:p:1210-:d:1168338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/6/1210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/6/1210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian P. Giardina & Michael G. Ryan, 2000. "Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature," Nature, Nature, vol. 404(6780), pages 858-861, April.
    2. Shaohua Zhang & Kun Yang & Yuling Ma & Mingchan Li, 2021. "The Expansion Dynamics and Modes of Impervious Surfaces in the Guangdong-Hong Kong-Macau Bay Area, China," Land, MDPI, vol. 10(11), pages 1-16, October.
    3. Daehyon Kim & Seungjae Lee & Seongkil Cho, 2007. "Input Vector Normalization Methods in Support Vector Machines for Automatic Incident Detection," Transportation Planning and Technology, Taylor & Francis Journals, vol. 30(6), pages 593-608, July.
    4. Ning Zhang & Kangning Xiong & Hua Xiao & Juan Zhang & Chuhong Shen, 2023. "Ecological Environment Dynamic Monitoring and Driving Force Analysis of Karst World Heritage Sites Based on Remote-Sensing: A Case Study of Shibing Karst," Land, MDPI, vol. 12(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo A.L.D. Nunes & Helen Ding & Sonja Teelucksingh, 2010. "European Forests and Carbon Sequestration Services: An Economic Assessment of Climate Change Impacts," Working Papers 2010.10, Fondazione Eni Enrico Mattei.
    2. Kun Zhang & Yu Wang & Ali Mamtimin & Yongqiang Liu & Lifang Zhang & Jiacheng Gao & Ailiyaer Aihaiti & Cong Wen & Meiqi Song & Fan Yang & Chenglong Zhou & Wen Huo, 2024. "Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China," Land, MDPI, vol. 13(5), pages 1-23, April.
    3. Feng Tang & Xu Zhou & Li Wang & Yangjian Zhang & Meichen Fu & Pengtao Zhang, 2021. "Linking Ecosystem Service and MSPA to Construct Landscape Ecological Network of the Huaiyang Section of the Grand Canal," Land, MDPI, vol. 10(9), pages 1-23, August.
    4. Muhammad Waseem Rasheed & Jialiang Tang & Abid Sarwar & Suraj Shah & Naeem Saddique & Muhammad Usman Khan & Muhammad Imran Khan & Shah Nawaz & Redmond R. Shamshiri & Marjan Aziz & Muhammad Sultan, 2022. "Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    5. Post, Joachim & Krysanova, Valentina & Suckow, Felicitas & Mirschel, Wilfried & Rogasik, Jutta & Merbach, Ines, 2007. "Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins," Ecological Modelling, Elsevier, vol. 206(1), pages 93-109.
    6. Xiongwen Chen & Wilfred Post & Richard Norby & Aimée Classen, 2011. "Modeling soil respiration and variations in source components using a multi-factor global climate change experiment," Climatic Change, Springer, vol. 107(3), pages 459-480, August.
    7. Yan-Jie Gu & Cheng-Long Han & Meng Kong & Kadambot H. M. Siddique & Feng-Min Li, 2022. "Film Mulching with Low Phosphorus Application Improves Soil Organic Carbon and Its Decomposability in a Semiarid Agroecosystem," Agriculture, MDPI, vol. 12(6), pages 1-17, June.
    8. Shu An & Yifang Duan & Dengshuai Chen & Xiaoman Wu, 2024. "Spatiotemporal Evolution and Drivers of Carbon Storage from a Sustainable Development Perspective: A Case Study of the Region along the Middle and Lower Yellow River, China," Sustainability, MDPI, vol. 16(15), pages 1-20, July.
    9. Wenting Huang & Long Guo & Ting Zhang & Ting Chen & Longqian Chen & Long Li & Xundi Zhang, 2024. "The Impact of Territorial Spatial Transformation on Carbon Storage: A Case Study of Suqian, East China," Land, MDPI, vol. 13(3), pages 1-22, March.
    10. E. Cienciala & Z. Exnerová & J. Macků & V. Henžlík, 2006. "Forest topsoil organic carbon content in Southwest Bohemiaregion," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 52(9), pages 387-398.
    11. Ying Jiang & Yilinuer Alifujiang & Pingping Feng & Ping Yang & Jianpeng Feng, 2024. "A Simulated Assessment of Land Use and Carbon Storage Changes in the Yanqi Basin under Different Development Scenarios," Land, MDPI, vol. 13(6), pages 1-23, May.
    12. Yuncheng Jiang & Bin Ouyang & Zhigang Yan, 2024. "The Response of Carbon Storage to Multi-Objective Land Use/Cover Spatial Optimization and Vulnerability Assessment," Sustainability, MDPI, vol. 16(6), pages 1-27, March.
    13. Yingxue Li & Zhaoshun Liu & Shujie Li & Xiang Li, 2022. "Multi-Scenario Simulation Analysis of Land Use and Carbon Storage Changes in Changchun City Based on FLUS and InVEST Model," Land, MDPI, vol. 11(5), pages 1-17, April.
    14. Yinan Yang & Jing Li & Li Wang & Zihao Wang & Yun Ling & Jialong Xu & Chenxin Yao & Yiyan Sun & Yuan Wang & Lixia Zhao, 2022. "The Impact of Urbanization on the Relationship between Carbon Storage Supply and Demand in Mega-Urban Agglomerations and Response Measures: A Case of Yangtze River Delta Region, China," IJERPH, MDPI, vol. 19(21), pages 1-22, October.
    15. Helen Ding & Silvia Silvestri & Aline Chiabai & Paulo A.L.D. Nunes, 2010. "A Hybrid Approach to the Valuation of Climate Change Effects on Ecosystem Services: Evidence from the European Forests," Working Papers 2010.50, Fondazione Eni Enrico Mattei.
    16. Daiji Wan & Jiping Liu & Dandan Zhao, 2023. "Assessment of Carbon Storage under Different SSP-RCP Scenarios in Terrestrial Ecosystems of Jilin Province, China," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    17. Bo Chen & Meiqi Zhang & Rui Yang & Wenling Tang, 2023. "Spatiotemporal Variations in the Carbon Sequestration Capacity of Plateau Lake Wetlands Regulated by Land Use Control under Policy Guidance," Land, MDPI, vol. 12(9), pages 1-21, August.
    18. Xiaobin Huang & Xiaosheng Liu & Youliang Chen & Yuanhang Jin & Xue Gao & Raihana Abbasi, 2024. "Evolution and Projection of Carbon Storage in Important Ecological Functional Areas of the Minjiang River Basin, 1985–2050," Sustainability, MDPI, vol. 16(15), pages 1-27, July.
    19. Smyth, C.E. & Kurz, W.A. & Trofymow, J.A., 2011. "Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3," Ecological Modelling, Elsevier, vol. 222(5), pages 1080-1091.
    20. Haobei Liu & Qi Wang & Na Liu & Hengrui Zhang & Yifei Tan & Zhe Zhang, 2023. "The Impact of Land Use/Cover Change on Ecological Environment Quality and Its Spatial Spillover Effect under the Coupling Effect of Urban Expansion and Open-Pit Mining Activities," Sustainability, MDPI, vol. 15(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:6:p:1210-:d:1168338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.