IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i1p184-d1026918.html
   My bibliography  Save this article

Ecological Environment Dynamic Monitoring and Driving Force Analysis of Karst World Heritage Sites Based on Remote-Sensing: A Case Study of Shibing Karst

Author

Listed:
  • Ning Zhang

    (School of Karst Science, Guizhou Normal University, Guiyang 550001, China
    State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China)

  • Kangning Xiong

    (School of Karst Science, Guizhou Normal University, Guiyang 550001, China
    State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China)

  • Hua Xiao

    (School of Karst Science, Guizhou Normal University, Guiyang 550001, China
    State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China)

  • Juan Zhang

    (School of Karst Science, Guizhou Normal University, Guiyang 550001, China
    State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China)

  • Chuhong Shen

    (School of Karst Science, Guizhou Normal University, Guiyang 550001, China
    State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China)

Abstract

The evaluation and monitoring of the ecological environment quality of heritage sites can help provide sustainable and healthy development strategies for heritage management organizations. In this study, an ecological evaluation model based on the remote sensing ecological index (RSEI) was used to measure the ecological environment of the Shibing Karst World Heritage Site and its buffer zone and the Moran index and geographic probe model were combined to quantify the ecological environment. The results show that, (1) from 2013 to 2020, the ecological environment quality of the heritage site and buffer zone was moderate to high and the mean RSEI values in the three periods studied were 0.720, 0.723 and 0.742, showing an overall upward and improving trend; (2) ecological environment quality grades of moderate and good accounted for more than 70% of the area, the distribution pattern of ecological environment quality is significantly better at the heritage site than in the buffer zone and the southwest is better than the northeast; (3) the Moran index increased from 0.600 in 2013 to 0.661 in 2020, residing in the first and third quadrants, respectively, with significantly spatial aggregation; and (4) greenness and humidity were shown to play a positive feedback role on the ecological environment quality and the spatial influence ability of humidity and dryness was greater. Overall, the RSEI is an effective method of evaluating and monitoring the ecological environment quality of heritage sites, the ecological environment quality of the Karst heritage site in Shibing is in a steady state of improvement and the relevant departments of heritage conservation need to further coordinate the relationship between conservation and development to promote the sustainable development of the heritage site and provide effective solutions for the monitoring of other Karst World Heritage sites.

Suggested Citation

  • Ning Zhang & Kangning Xiong & Hua Xiao & Juan Zhang & Chuhong Shen, 2023. "Ecological Environment Dynamic Monitoring and Driving Force Analysis of Karst World Heritage Sites Based on Remote-Sensing: A Case Study of Shibing Karst," Land, MDPI, vol. 12(1), pages 1-15, January.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:1:p:184-:d:1026918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/1/184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/1/184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Subhasis Das & Biswajeet Pradhan & Pravat Kumar Shit & Abdullah M. Alamri, 2020. "Assessment of Wetland Ecosystem Health Using the Pressure–State–Response (PSR) Model: A Case Study of Mursidabad District of West Bengal (India)," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    2. Qin Liu & Zhaoping Yang & Fang Han & Hui Shi & Zhi Wang & Xiaodong Chen, 2019. "Ecological Environment Assessment in World Natural Heritage Site Based on Remote-Sensing Data. A Case Study from the Bayinbuluke," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    3. Wei Ren & Xuesong Zhang & Yebo Shi, 2021. "Evaluation of Ecological Environment Effect of Villages Land Use and Cover Change: A Case Study of Some Villages in Yudian Town, Guangshui City, Hubei Province," Land, MDPI, vol. 10(3), pages 1-19, March.
    4. Ruonan Fang & Juan Zhang & Kangning Xiong & Kyung-Sik Woo & Ning Zhang, 2021. "Influencing Factors of Residents’ Perception of Responsibilities for Heritage Conservation in World Heritage Buffer Zone: A Case Study of Libo Karst," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    5. Nan Cui & Chen-Chieh Feng & Rui Han & Luo Guo, 2019. "Impact of Urbanization on Ecosystem Health: A Case Study in Zhuhai, China," IJERPH, MDPI, vol. 16(23), pages 1-17, November.
    6. Jaafar, Mastura & Noor, Shuhaida Md & Rasoolimanesh, S. Mostafa, 2015. "Perception of young local residents toward sustainable conservation programmes: A case study of the Lenggong World Cultural Heritage Site," Tourism Management, Elsevier, vol. 48(C), pages 154-163.
    7. Nitu Wu & Aijun Liu & Yongfang Wang & Lanhua Li & Lumengqiqige Chao & Guixiang Liu, 2019. "An Assessment Framework for Grassland Ecosystem Health with Consideration of Natural Succession: A Case Study in Bayinxile, China," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haobei Liu & Qi Wang & Na Liu & Hengrui Zhang & Yifei Tan & Zhe Zhang, 2023. "The Impact of Land Use/Cover Change on Ecological Environment Quality and Its Spatial Spillover Effect under the Coupling Effect of Urban Expansion and Open-Pit Mining Activities," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    2. Fangqu Niu & Lan Wang & Wei Sun, 2023. "Spatiotemporal Characteristics and Determinants of Rural Construction Land in China’s Developed Areas: A Case Study of the Yangtze River Delta," Land, MDPI, vol. 12(10), pages 1-19, October.
    3. Yimin Li & Xue Yang & Bowen Wu & Juanzhen Zhao & Xuanlun Deng, 2023. "Impervious Surface Mapping Based on Remote Sensing and an Optimized Coupled Model: The Dianchi Basin as an Example," Land, MDPI, vol. 12(6), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Wang & Zhaoping Yang & Hui Shi & Fang Han & Qin Liu & Jianwei Qi & Yayan Lu, 2020. "Ecosystem Health Assessment of World Natural Heritage Sites Based on Remote Sensing and Field Sampling Verification: Bayanbulak as Case Study," Sustainability, MDPI, vol. 12(7), pages 1-21, March.
    2. Wilawan Jansri, 2019. "Perception of Residents, Community Participation and Support for Tourism Development in the Old Town Muang Songkhla, Thailand," Proceedings of the 13th International RAIS Conference, June 10-11, 2019 07WJ, Research Association for Interdisciplinary Studies.
    3. Yue Chen & Kangning Xiong & Xiaodong Ren & Cai Cheng, 2021. "Vulnerability Comparison between Karst and Non-Karst Nature Reserves—With a Special Reference to Guizhou Province, China," Sustainability, MDPI, vol. 13(5), pages 1-12, February.
    4. Xu Bi & Bianrong Chang & Fen Hou & Zihan Yang & Qi Fu & Bo Li, 2021. "Assessment of Spatio-Temporal Variation and Driving Mechanism of Ecological Environment Quality in the Arid Regions of Central Asia, Xinjiang," IJERPH, MDPI, vol. 18(13), pages 1-23, July.
    5. Beichen Ge & Congjin Wang & Yuhong Song, 2023. "Ecosystem Services Research in Rural Areas: A Systematic Review Based on Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    6. Rasoolimanesh, S. Mostafa & Ringle, Christian M. & Jaafar, Mastura & Ramayah, T., 2017. "Urban vs. rural destinations: Residents’ perceptions, community participation and support for tourism development," Tourism Management, Elsevier, vol. 60(C), pages 147-158.
    7. Rasoolimanesh, S. Mostafa & Jaafar, Mastura & Ahmad, A. Ghafar & Barghi, Rabeeh, 2017. "Community participation in World Heritage Site conservation and tourism development," Tourism Management, Elsevier, vol. 58(C), pages 142-153.
    8. Yi Xiao & Luo Guo & Weiguo Sang, 2020. "Impact of Fast Urbanization on Ecosystem Health in Mountainous Regions of Southwest China," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    9. Chao Li & Xuemei Li & Dongliang Luo & Yi He & Fangfang Chen & Bo Zhang & Qiyong Qin, 2021. "Spatiotemporal Pattern of Vegetation Ecology Quality and Its Response to Climate Change between 2000–2017 in China," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    10. Hong Ran & Yonggang Ma & Zhonglin Xu, 2022. "Evaluation and Prediction of Land Use Ecological Security in the Kashgar Region Based on Grid GIS," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    11. Brankov Jovana & Glavonjić Tamara Jojić & Pešić Ana Milanović & Petrović Marko D. & Tretiakova Tatiana N., 2019. "Residents’ Perceptions of Tourism Impact on Community in National Parks in Serbia," European Countryside, Sciendo, vol. 11(1), pages 124-142, March.
    12. Akvilė Feiferytė-Skirienė & Lina Draudvilienė & Žaneta Stasiškienė & Sergej Sosunkevič & Kastytis Pamakštys & Laura Daniusevičiūtė-Brazaitė & Inga Gurauskienė, 2022. "Co-Creation Hub Is the First Step for the Successful Creation of a Unified Urban Ecosystem-Kaunas City Example," IJERPH, MDPI, vol. 19(5), pages 1-12, February.
    13. Tianqi Zhao & Feng Zhang & Rongzhen Suo & Chen Gu & Daling Chen & Tony Yang & Mengli Zhao, 2020. "Biennial Mowing Maintains the Biomass and Functional Diversity of Semi-Arid Grassland," Sustainability, MDPI, vol. 12(4), pages 1-11, February.
    14. Lidija Lalicic & Irem Önder, 2018. "Residents’ Involvement in Urban Tourism Planning: Opportunities from a Smart City Perspective," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    15. Nurhanisah Hazarudin* & Radzi Ismail & Wan Nadzri Osman & Fazdliel Aswad Ibrahim, 2018. "Perception of Tourists Towards Challenges Heritage Building Conservation," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 1145-1150:6.
    16. Xinsheng Zhu & Yongfeng Yang & Jun Yuan & Ziru Niu, 2023. "Evaluation of the Ecological Status of Wetlands of International Importance in China," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    17. María Ángeles Plaza-Mejía & Nuria Porras-Bueno & David Flores-Ruiz, 2020. "The Jungle of Support: What Do We Really Mean When We Say “Residents’ Support”?," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    18. Junnan Xiong & Wei Li & Hao Zhang & Weiming Cheng & Chongchong Ye & Yunliang Zhao, 2019. "Selected Environmental Assessment Model and Spatial Analysis Method to Explain Correlations in Environmental and Socio-Economic Data with Possible Application for Explaining the State of the Ecosystem," Sustainability, MDPI, vol. 11(17), pages 1-26, September.
    19. Zhihong Yao & Zhuangzhuang Liu & Junshan Lei & Dun Zhu & Haiyan Jia & Muchen Jiang & Chunming Li & Zhilong Xie & Chongchong Peng & Yiwen Zhang, 2022. "Identification and Evaluation of Water Pollution Risk in the Chongqing Section of the Three Gorges Reservoir Area in China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    20. Xue Ding & Yuqin Shu & Xianzhe Tang & Jingwen Ma, 2022. "Identifying Driving Factors of Basin Ecosystem Service Value Based on Local Bivariate Spatial Correlation Patterns," Land, MDPI, vol. 11(10), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:1:p:184-:d:1026918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.