IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6552-d1446967.html
   My bibliography  Save this article

Evolution and Projection of Carbon Storage in Important Ecological Functional Areas of the Minjiang River Basin, 1985–2050

Author

Listed:
  • Xiaobin Huang

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
    The Engineering & Technical College, Chengdu University of Technology, Leshan 614000, China
    Southwestern Institute of Physics, Chengdu 610041, China)

  • Xiaosheng Liu

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Youliang Chen

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Yuanhang Jin

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Xue Gao

    (The Engineering & Technical College, Chengdu University of Technology, Leshan 614000, China
    Southwestern Institute of Physics, Chengdu 610041, China)

  • Raihana Abbasi

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)

Abstract

The alteration of land use and cover (LULC) and the landscape ecological risk index (LERI) significantly impact carbon storage. Examining the carbon storage services in ecologically significant places is crucial for achieving a harmonious relationship between economic development in the region, conservation of terrestrial ecosystems, and mitigation of carbon sink depletion. This study aims to provide a complete framework that integrates the PLUS, Fragstats, and InVEST models. This framework will be utilized to optimize LULC and LERI, specifically maximizing carbon storage. The analysis will be carried out over an extended duration and from various viewpoints. The results indicate that the MJRB ecosystem experienced three clearly defined phases: enhancement (1985–1995), degradation (1995–2010), and subsequent enhancement (2010–2020). The LERI of high-level and carbon storage patterns showed similar trends. The degradation of local terrestrial ecosystems can primarily be due to the widespread use of ecological land caused by socio-economic development. The Ecological Preservation Scenario is projected to increase 41.97 Tg and 115.18 Tg in carbon storage. In contrast, the urban development scenario showed a substantial decrease in carbon storage rates, namely 0.89% and 1.34%, primarily evident in the Chengdu urban zone. An analysis of coupling coordination revealed a negative relationship between carbon storage and high LERI, while a positive connection was observed with low LERI. This study established a framework for rapidly assessing and forecasting the trajectory of carbon storage. It aids in optimizing land use patterns, conserving areas with high carbon sequestration, and ensuring the establishment of high-quality ecosystems. This study serves as a guide for achieving regional “dual carbon” objectives.

Suggested Citation

  • Xiaobin Huang & Xiaosheng Liu & Youliang Chen & Yuanhang Jin & Xue Gao & Raihana Abbasi, 2024. "Evolution and Projection of Carbon Storage in Important Ecological Functional Areas of the Minjiang River Basin, 1985–2050," Sustainability, MDPI, vol. 16(15), pages 1-27, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6552-:d:1446967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen Qu & Wen Li & Jia Xu & Song Shi, 2023. "Blackland Conservation and Utilization, Carbon Storage and Ecological Risk in Green Space: A Case Study from Heilongjiang Province in China," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    2. Christian P. Giardina & Michael G. Ryan, 2000. "Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature," Nature, Nature, vol. 404(6780), pages 858-861, April.
    3. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    4. Anthony J. Stewart & Meghan Halabisky & Chad Babcock & David E. Butman & David V. D’Amore & L. Monika Moskal, 2024. "Revealing the hidden carbon in forested wetland soils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. R. A. Houghton & D. L. Skole & Carlos A. Nobre & J. L. Hackler & K. T. Lawrence & W H. Chomentowski, 2000. "Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon," Nature, Nature, vol. 403(6767), pages 301-304, January.
    6. T. W. Crowther & K. E. O. Todd-Brown & C. W. Rowe & W. R. Wieder & J. C. Carey & M. B. Machmuller & B. L. Snoek & S. Fang & G. Zhou & S. D. Allison & J. M. Blair & S. D. Bridgham & A. J. Burton & Y. C, 2016. "Quantifying global soil carbon losses in response to warming," Nature, Nature, vol. 540(7631), pages 104-108, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Zhang & Yu Wang & Ali Mamtimin & Yongqiang Liu & Lifang Zhang & Jiacheng Gao & Ailiyaer Aihaiti & Cong Wen & Meiqi Song & Fan Yang & Chenglong Zhou & Wen Huo, 2024. "Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China," Land, MDPI, vol. 13(5), pages 1-23, April.
    2. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    3. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    4. Iain P. Hartley & Tim C. Hill & Sarah E. Chadburn & Gustaf Hugelius, 2021. "Temperature effects on carbon storage are controlled by soil stabilisation capacities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Numazawa, Camila T.D. & Numazawa, Sueo & Pacca, Sergio & John, Vanderley M., 2017. "Logging residues and CO2 of Brazilian Amazon timber: Two case studies of forest harvesting," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 280-285.
    6. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    7. Yuanyuan Yang & Shuwen Zhang & Jiuchun Yang & Xiaoshi Xing & Dongyan Wang, 2015. "Using a Cellular Automata-Markov Model to Reconstruct Spatial Land-Use Patterns in Zhenlai County, Northeast China," Energies, MDPI, vol. 8(5), pages 1-21, May.
    8. Lijiang Hu & Ruikun Zeng & Jianwu Yao & Ziwei Liang & Zhaobing Zeng & Wenying Li & Ronghui Wang & Xianjiang Shu & Yong Chen & Jianfeng Ning, 2024. "Characteristics of the Soil Organic Carbon Pool in Paddy Fields in Guangdong Province, South China," Agriculture, MDPI, vol. 14(9), pages 1-13, August.
    9. Paulo A.L.D. Nunes & Helen Ding & Sonja Teelucksingh, 2010. "European Forests and Carbon Sequestration Services: An Economic Assessment of Climate Change Impacts," Working Papers 2010.10, Fondazione Eni Enrico Mattei.
    10. Bonoua Faye & Guoming Du & Edmée Mbaye & Chang’an Liang & Tidiane Sané & Ruhao Xue, 2023. "Assessing the Spatial Agricultural Land Use Transition in Thiès Region, Senegal, and Its Potential Driving Factors," Land, MDPI, vol. 12(4), pages 1-20, March.
    11. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    12. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    13. Brian Pickard & Joshua Gray & Ross Meentemeyer, 2017. "Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models," Land, MDPI, vol. 6(3), pages 1-21, August.
    14. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    15. Quanxu Hu & Jinhe Zhang & Huaju Xue & Jingwei Wang & Aiqing Li, 2024. "Spatiotemporal Variations in Carbon Sources and Sinks in National Park Ecosystem and the Impact of Tourism," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
    16. Yimin Li & Xue Yang & Bowen Wu & Juanzhen Zhao & Xuanlun Deng, 2023. "Impervious Surface Mapping Based on Remote Sensing and an Optimized Coupled Model: The Dianchi Basin as an Example," Land, MDPI, vol. 12(6), pages 1-26, June.
    17. Federico E. Alice‐Guier & Frits Mohren & Pieter A. Zuidema, 2020. "The life cycle carbon balance of selective logging in tropical forests of Costa Rica," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 534-547, June.
    18. Zhang, Yan & Chang, Xia & Liu, Yanfang & Lu, Yanchi & Wang, Yiheng & Liu, Yaolin, 2021. "Urban expansion simulation under constraint of multiple ecosystem services (MESs) based on cellular automata (CA)-Markov model: Scenario analysis and policy implications," Land Use Policy, Elsevier, vol. 108(C).
    19. Feng Tang & Xu Zhou & Li Wang & Yangjian Zhang & Meichen Fu & Pengtao Zhang, 2021. "Linking Ecosystem Service and MSPA to Construct Landscape Ecological Network of the Huaiyang Section of the Grand Canal," Land, MDPI, vol. 10(9), pages 1-23, August.
    20. Margaret Gitau & Nathaniel Bailey, 2012. "Multi-Layer Assessment of Land Use and Related Changes for Decision Support in a Coastal Zone Watershed," Land, MDPI, vol. 1(1), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6552-:d:1446967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.