IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6552-d1446967.html
   My bibliography  Save this article

Evolution and Projection of Carbon Storage in Important Ecological Functional Areas of the Minjiang River Basin, 1985–2050

Author

Listed:
  • Xiaobin Huang

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
    The Engineering & Technical College, Chengdu University of Technology, Leshan 614000, China
    Southwestern Institute of Physics, Chengdu 610041, China)

  • Xiaosheng Liu

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Youliang Chen

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Yuanhang Jin

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Xue Gao

    (The Engineering & Technical College, Chengdu University of Technology, Leshan 614000, China
    Southwestern Institute of Physics, Chengdu 610041, China)

  • Raihana Abbasi

    (School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)

Abstract

The alteration of land use and cover (LULC) and the landscape ecological risk index (LERI) significantly impact carbon storage. Examining the carbon storage services in ecologically significant places is crucial for achieving a harmonious relationship between economic development in the region, conservation of terrestrial ecosystems, and mitigation of carbon sink depletion. This study aims to provide a complete framework that integrates the PLUS, Fragstats, and InVEST models. This framework will be utilized to optimize LULC and LERI, specifically maximizing carbon storage. The analysis will be carried out over an extended duration and from various viewpoints. The results indicate that the MJRB ecosystem experienced three clearly defined phases: enhancement (1985–1995), degradation (1995–2010), and subsequent enhancement (2010–2020). The LERI of high-level and carbon storage patterns showed similar trends. The degradation of local terrestrial ecosystems can primarily be due to the widespread use of ecological land caused by socio-economic development. The Ecological Preservation Scenario is projected to increase 41.97 Tg and 115.18 Tg in carbon storage. In contrast, the urban development scenario showed a substantial decrease in carbon storage rates, namely 0.89% and 1.34%, primarily evident in the Chengdu urban zone. An analysis of coupling coordination revealed a negative relationship between carbon storage and high LERI, while a positive connection was observed with low LERI. This study established a framework for rapidly assessing and forecasting the trajectory of carbon storage. It aids in optimizing land use patterns, conserving areas with high carbon sequestration, and ensuring the establishment of high-quality ecosystems. This study serves as a guide for achieving regional “dual carbon” objectives.

Suggested Citation

  • Xiaobin Huang & Xiaosheng Liu & Youliang Chen & Yuanhang Jin & Xue Gao & Raihana Abbasi, 2024. "Evolution and Projection of Carbon Storage in Important Ecological Functional Areas of the Minjiang River Basin, 1985–2050," Sustainability, MDPI, vol. 16(15), pages 1-27, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6552-:d:1446967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    2. Chen Qu & Wen Li & Jia Xu & Song Shi, 2023. "Blackland Conservation and Utilization, Carbon Storage and Ecological Risk in Green Space: A Case Study from Heilongjiang Province in China," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    3. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    4. Anthony J. Stewart & Meghan Halabisky & Chad Babcock & David E. Butman & David V. D’Amore & L. Monika Moskal, 2024. "Revealing the hidden carbon in forested wetland soils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Huang, Daquan & Huang, Jing & Liu, Tao, 2019. "Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries," Land Use Policy, Elsevier, vol. 82(C), pages 422-435.
    6. Christian P. Giardina & Michael G. Ryan, 2000. "Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature," Nature, Nature, vol. 404(6780), pages 858-861, April.
    7. Shu, Hui & Xiong, Ping-ping, 2019. "Reallocation planning of urban industrial land for structure optimization and emission reduction: A practical analysis of urban agglomeration in China’s Yangtze River Delta," Land Use Policy, Elsevier, vol. 81(C), pages 604-623.
    8. R. A. Houghton & D. L. Skole & Carlos A. Nobre & J. L. Hackler & K. T. Lawrence & W H. Chomentowski, 2000. "Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon," Nature, Nature, vol. 403(6767), pages 301-304, January.
    9. T. W. Crowther & K. E. O. Todd-Brown & C. W. Rowe & W. R. Wieder & J. C. Carey & M. B. Machmuller & B. L. Snoek & S. Fang & G. Zhou & S. D. Allison & J. M. Blair & S. D. Bridgham & A. J. Burton & Y. C, 2016. "Quantifying global soil carbon losses in response to warming," Nature, Nature, vol. 540(7631), pages 104-108, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changqing Sun & Yulong Bao & Battsengel Vandansambuu & Yuhai Bao, 2022. "Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    2. Kun Zhang & Yu Wang & Ali Mamtimin & Yongqiang Liu & Lifang Zhang & Jiacheng Gao & Ailiyaer Aihaiti & Cong Wen & Meiqi Song & Fan Yang & Chenglong Zhou & Wen Huo, 2024. "Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China," Land, MDPI, vol. 13(5), pages 1-23, April.
    3. Luoman Pu & Jiuchun Yang & Lingxue Yu & Changsheng Xiong & Fengqin Yan & Yubo Zhang & Shuwen Zhang, 2021. "Simulating Land-Use Changes and Predicting Maize Potential Yields in Northeast China for 2050," IJERPH, MDPI, vol. 18(3), pages 1-21, January.
    4. Yangcheng Hu & Yi Liu & Changyan Li, 2022. "Multi-Scenario Simulation of Land Use Change and Ecosystem Service Value in the Middle Reaches of Yangtze River Urban Agglomeration," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    5. Yuxiang Zhang & Dongjie Guan & Xiujuan He & Boling Yin, 2022. "Simulation on the Evolution Trend of the Urban Sprawl Spatial Pattern in the Upper Reaches of the Yangtze River, China," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    6. Wenting Zhang & Bo Li, 2021. "Research on an Analytical Framework for Urban Spatial Structural and Functional Optimisation: A Case Study of Beijing City, China," Land, MDPI, vol. 10(1), pages 1-19, January.
    7. Guoqiang Ma & Qiujie Li & Jinxiu Zhang & Lixun Zhang & Hua Cheng & Zhengping Ju & Guojun Sun, 2022. "Simulation and Analysis of Land-Use Change Based on the PLUS Model in the Fuxian Lake Basin (Yunnan–Guizhou Plateau, China)," Land, MDPI, vol. 12(1), pages 1-18, December.
    8. Wang, Huan & Zhang, Chao & Yao, Xiaochuang & Yun, Wenju & Ma, Jiani & Gao, Lulu & Li, Pengshan, 2022. "Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China," Land Use Policy, Elsevier, vol. 114(C).
    9. Xu, Hongtao & Song, Youcheng & Tian, Yi, 2022. "Simulation of land-use pattern evolution in hilly mountainous areas of North China: A case study in Jincheng," Land Use Policy, Elsevier, vol. 112(C).
    10. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    11. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    12. Yan Zhou & Tao Chen & Jingjing Wang & Xiaolan Xu, 2023. "Analyzing the Factors Driving the Changes of Ecosystem Service Value in the Liangzi Lake Basin—A GeoDetector-Based Application," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    13. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    14. Iain P. Hartley & Tim C. Hill & Sarah E. Chadburn & Gustaf Hugelius, 2021. "Temperature effects on carbon storage are controlled by soil stabilisation capacities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    15. Numazawa, Camila T.D. & Numazawa, Sueo & Pacca, Sergio & John, Vanderley M., 2017. "Logging residues and CO2 of Brazilian Amazon timber: Two case studies of forest harvesting," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 280-285.
    16. Liu, Jingming & Hou, Xianhui & Wang, Zhanqi & Shen, Yue, 2021. "Study the effect of industrial structure optimization on urban land-use efficiency in China," Land Use Policy, Elsevier, vol. 105(C).
    17. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    18. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    19. Yang Zhang & Xiaojiang Xia & Jiandong Li & Luge Xing & Chengchao Yang & Haofeng Wang & Xiaoai Dai & Jue Wang, 2024. "Simulation of Urban Growth Boundary under the Guidance of Stock Development: A Case Study of Wuhan City," Land, MDPI, vol. 13(8), pages 1-22, July.
    20. Yuanyuan Yang & Shuwen Zhang & Jiuchun Yang & Xiaoshi Xing & Dongyan Wang, 2015. "Using a Cellular Automata-Markov Model to Reconstruct Spatial Land-Use Patterns in Zhenlai County, Northeast China," Energies, MDPI, vol. 8(5), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6552-:d:1446967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.