IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i5p516-d553490.html
   My bibliography  Save this article

Linking Urban Sprawl and Surface Urban Heat Island in the Teresina–Timon Conurbation Area in Brazil

Author

Listed:
  • Eduilson Carneiro

    (Federal Institute of Education, Science and Technology of Piauí (IFPI), Teresina 64000-040, Brazil)

  • Wilza Lopes

    (Department of Civil and Architecture, Federal University of Piauí (UFPI), Teresina 64049-550, Brazil)

  • Giovana Espindola

    (Department of Transports, Federal University of Piauí (UFPI), Teresina 64049-550, Brazil)

Abstract

Negative consequences of urban growing disparities usually lead to impressive levels of segregation, marginalization, and injustices, particularly in the context of climate change. Understanding the relations between urban expansion and social vulnerability has become extremely necessary for municipality management and sustainable urban development. Although the study of urbanization in Latin America (LA) has been well discussed, little attention has been given to how the population is affected by urban expansion-oriented movement after the 2008 economic crisis. Massive investments in infrastructure displaced the population to peripheral zones without adequate urban planning, which reflected in alteration in land use and land cover (LULC), followed by environmental impacts and public health issues caused by thermal discomfort, notably in semiarid regions. This paper aims to evaluate the effects of urban sprawl on the Teresina–Timon conurbation (TTC) area’s local population, located in Brazil’s northeast. Descriptive metrics (Moran’s I statistic and social vulnerability index) and orbital products derived from remote sensing—LULC and Land surface temperature (LST) maps—were applied. The results indicated that the housing program ‘My House My Life’ (PMCMV) had increased the values of land consumption per capita since 2009 significantly, showing a clear expanding trend. The gradual replacement of green areas by residential settlements resulted in an increased LST. The PMCMV program contributed substantially to a change in land use and land cover, which increased the extent of urbanized areas and changed the local microclimate.

Suggested Citation

  • Eduilson Carneiro & Wilza Lopes & Giovana Espindola, 2021. "Linking Urban Sprawl and Surface Urban Heat Island in the Teresina–Timon Conurbation Area in Brazil," Land, MDPI, vol. 10(5), pages 1-16, May.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:516-:d:553490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/5/516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/5/516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucia Shimbo, 2019. "An unprecedented alignment: state, finance, construction and housing production in Brazil since the 2000s," International Journal of Housing Policy, Taylor & Francis Journals, vol. 19(3), pages 337-353, July.
    2. Shabana Khan, 2012. "Vulnerability assessments and their planning implications: a case study of the Hutt Valley, New Zealand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1587-1607, November.
    3. Seth E. Spielman & Joseph Tuccillo & David C. Folch & Amy Schweikert & Rebecca Davies & Nathan Wood & Eric Tate, 2020. "Evaluating social vulnerability indicators: criteria and their application to the Social Vulnerability Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 417-436, January.
    4. Lucia Shimbo, 2019. "An unprecedented alignment: state, finance, construction and housing production in Brazil since the 2000s," European Journal of Housing Policy, Taylor and Francis Journals, vol. 19(3), pages 337-353, July.
    5. Manuel Rivera, 2013. "Political Criteria for Sustainable Development Goal (SDG) Selection and the Role of the Urban Dimension," Sustainability, MDPI, vol. 5(12), pages 1-18, November.
    6. Sheliza Bhanjee & Sumei Zhang, 2021. "Do urban planning and sprawl affect social vulnerability? An assessment of Dar es Salaam," Development Southern Africa, Taylor & Francis Journals, vol. 38(2), pages 189-207, March.
    7. Annabelle Mourougane & Mauro Pisu, 2011. "Promoting Infrastructure Development in Brazil," OECD Economics Department Working Papers 898, OECD Publishing.
    8. Ran Goldblatt & Abdullah Addas & Daynan Crull & Ahmad Maghrabi & Gabriel Gene Levin & Steven Rubinyi, 2021. "Remotely Sensed Derived Land Surface Temperature (LST) as a Proxy for Air Temperature and Thermal Comfort at a Small Geographical Scale," Land, MDPI, vol. 10(4), pages 1-24, April.
    9. Irene Molina & Darinka Czischke & Raquel Rolnik, 2019. "Housing policy issues in contemporary South America: an introduction," International Journal of Housing Policy, Taylor & Francis Journals, vol. 19(3), pages 277-287, July.
    10. Xuefei Ren, 2018. "Governing the Informal: Housing Policies Over Informal Settlements in China, India, and Brazil," Housing Policy Debate, Taylor & Francis Journals, vol. 28(1), pages 79-93, January.
    11. Guangzhao Chen & Xia Li & Xiaoping Liu & Yimin Chen & Xun Liang & Jiye Leng & Xiaocong Xu & Weilin Liao & Yue’an Qiu & Qianlian Wu & Kangning Huang, 2020. "Global projections of future urban land expansion under shared socioeconomic pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    12. Irene Molina & Darinka Czischke & Raquel Rolnik, 2019. "Housing policy issues in contemporary South America: an introduction," European Journal of Housing Policy, Taylor and Francis Journals, vol. 19(3), pages 277-287, July.
    13. Yixu Wang & Mingxue Xu & Jun Li & Nan Jiang & Dongchuan Wang & Lei Yao & Ying Xu, 2020. "The Gradient Effect on the Relationship between the Underlying Factor and Land Surface Temperature in Large Urbanized Region," Land, MDPI, vol. 10(1), pages 1-16, December.
    14. Jose Marengo & Mauro Bernasconi, 2015. "Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections," Climatic Change, Springer, vol. 129(1), pages 103-115, March.
    15. Jose A. Marengo & Ana Paula M. A. Cunha & Carlos A. Nobre & Germano G. Ribeiro Neto & Antonio R. Magalhaes & Roger R. Torres & Gilvan Sampaio & Felipe Alexandre & Lincoln M. Alves & Luz A. Cuartas & K, 2020. "Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2589-2611, September.
    16. Karen C Seto & Michail Fragkias & Burak Güneralp & Michael K Reilly, 2011. "A Meta-Analysis of Global Urban Land Expansion," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    2. Dinglin Zhang & Yangyi Wu & Meitong Liu, 2023. "Characterizing Sprawl Development in Urban China: A Perspective from Urban Amenity," Land, MDPI, vol. 12(6), pages 1-17, June.
    3. Shifeng Li & Zhihao Qin & Shuhe Zhao & Maofang Gao & Shilei Li & Qianyu Liao & Wenhui Du, 2022. "Spatiotemporal Variation of Land Surface Temperature in Henan Province of China from 2003 to 2021," Land, MDPI, vol. 11(7), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandra Reyes & Patricia Basile, 2022. "The Distinctive Evolution Of Housing Financialization In Brazil And Mexico," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 46(6), pages 933-953, November.
    2. Eduarda Marques da Costa & Ideni Terezinha Antonello, 2021. "Urban Planning and Residential Segregation in Brazil—The Failure of the “Special Zone of Social Interest” Instrument in Londrina City (PR)," Sustainability, MDPI, vol. 13(23), pages 1-18, November.
    3. Franklin Paredes-Trejo & Humberto Alves Barbosa & Gabriel Antunes Daldegan & Ingrid Teich & César Luis García & T. V. Lakshmi Kumar & Catarina de Oliveira Buriti, 2023. "Impact of Drought on Land Productivity and Degradation in the Brazilian Semiarid Region," Land, MDPI, vol. 12(5), pages 1-19, April.
    4. Rodrigo Castriota, 2024. "HOUSING BEYOND THE METROPOLIS: Inhabiting Extractivism and Extensions in Urban Amazonia," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 48(1), pages 32-52, January.
    5. Ruiz-Tagle, Jaime & Urria, Ignacio, 2022. "Household overcrowding trajectories and mental well-being," Social Science & Medicine, Elsevier, vol. 296(C).
    6. Ivan Turok & Andreas Scheba & Justin Visagie, 2022. "Can social housing help to integrate divided cities? [Segregation and the urban rich; enclaves, networks and mobilities]," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 15(1), pages 93-116.
    7. Karen Soledad Villanueva-Paredes & Grace Ximena Villanueva-Paredes, 2023. "Policies and Mechanisms of Public Financing for Social Housing in Peru," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    8. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    9. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    10. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Sean Fox & Felix Agyemang & Laurence Hawker & Jeffrey Neal, 2024. "Integrating social vulnerability into high-resolution global flood risk mapping," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Han Li & Wei Song, 2021. "Cropland Abandonment and Influencing Factors in Chongqing, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    15. Wei Yang & Yuanxu Ma & Linhai Jing & Siyuan Wang & Zhongchang Sun & Yunwei Tang & Hui Li, 2022. "Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant’s Range," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    16. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    17. Itziar Modrego-Monforte & Mikel Barrena-Herrán & Olatz Grijalba, 2023. "A Multi-Criteria Analysis GIS Tool for Measuring the Vulnerability of the Residential Stock Based on Multidimensional Indices," Land, MDPI, vol. 12(8), pages 1-16, August.
    18. Wu, Ye & Tao, Yu & Yang, Guishan & Ou, Weixin & Pueppke, Steven & Sun, Xiao & Chen, Gongtai & Tao, Qin, 2019. "Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections," Land Use Policy, Elsevier, vol. 85(C), pages 419-427.
    19. Paulo Eduardo Teodoro & Luciano de Souza Maria & Jéssica Marciella Almeida Rodrigues & Adriana de Avila e Silva & Maiara Cristina Metzdorf da Silva & Samara Santos de Souza & Fernando Saragosa Rossi &, 2022. "Wildfire Incidence throughout the Brazilian Pantanal Is Driven by Local Climate Rather Than Bovine Stocking Density," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    20. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:516-:d:553490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.