IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i8p1098-d872221.html
   My bibliography  Save this article

A Gas Diffusion Analysis Method for Simulating Surface Nitrous Oxide Emissions in Soil Gas Concentrations Measurement

Author

Listed:
  • K. M. T. S. Bandara

    (United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
    Department of Agricultural Engineering, Faculty of Agriculture, University of Ruhuna, Kamburupitiya 81100, Sri Lanka)

  • Kazuhito Sakai

    (United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
    Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan)

  • Tamotsu Nakandakari

    (United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
    Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan)

  • Kozue Yuge

    (United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
    Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan)

Abstract

The detection of low gas concentrations from the soil surface demands expensive high-precision devices to estimate nitrous oxide (N 2 O) flux. As the prevalence of N 2 O concentration in the soil atmosphere is higher than its surface, the present study aimed to simulate N 2 O surface flux (CF) from soil gas measured in a soil-interred silicone diffusion cell using a low-cost device. The methodological steps included the determination of the diffusion coefficient of silicone membrane ( D slcn ), the measurement of the temporal variations in the N 2 O gas in the soil ( C si ) and on the surface (MF), and the development of a simulation process for predicting CF. Two experiments varying the procedure and periods of soil moisture saturation in each fertilized soil sample were conducted to detect C si and MF. Using D slcn and C si , the variations in the soil gas ( C soil ) were predicted by solving the diffusion equation using the implicit finite difference analysis method. Similarly, using six soil gas diffusivity models, the CF values were simulated from C soil . For both experiments, statistical tests confirmed the good agreement of CF with MF for soil gas diffusivity models 4 and 5. We suggest that the tested simulation method is appropriate for predicting N 2 O surface emissions.

Suggested Citation

  • K. M. T. S. Bandara & Kazuhito Sakai & Tamotsu Nakandakari & Kozue Yuge, 2022. "A Gas Diffusion Analysis Method for Simulating Surface Nitrous Oxide Emissions in Soil Gas Concentrations Measurement," Agriculture, MDPI, vol. 12(8), pages 1-16, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1098-:d:872221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/8/1098/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/8/1098/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kees Jan van Groenigen & Craig W. Osenberg & Bruce A. Hungate, 2011. "Increased soil emissions of potent greenhouse gases under increased atmospheric CO2," Nature, Nature, vol. 475(7355), pages 214-216, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dengpan Xiao & Wenjiao Shi, 2023. "Modeling the Adaptation of Agricultural Production to Climate Change," Agriculture, MDPI, vol. 13(2), pages 1-4, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyue Qu & Yue Li & Chu Wang & Jiayue Qiao & Kai Zhu & Yan Sun & Qiannan Hu, 2024. "Effect of Sod Production on Physical, Chemical, and Biological Properties of Soils in North and South China," Agriculture, MDPI, vol. 14(10), pages 1-20, October.
    2. Juan Carlos Alías & José Antonio Mejías & Natividad Chaves, 2022. "Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain," Land, MDPI, vol. 11(3), pages 1-12, March.
    3. Yong Li & De Li Liu & Graeme Schwenke & Bin Wang & Ian Macadam & Weijin Wang & Guangdi Li & Ram C Dalal, 2017. "Responses of nitrous oxide emissions from crop rotation systems to four projected future climate change scenarios on a black Vertosol in subtropical Australia," Climatic Change, Springer, vol. 142(3), pages 545-558, June.
    4. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    5. Tangzhe Nie & Zhongxue Zhang & Zhijuan Qi & Peng Chen & Zhongyi Sun & Xingchao Liu, 2019. "Characterizing Spatiotemporal Dynamics of CH 4 Fluxes from Rice Paddies of Cold Region in Heilongjiang Province under Climate Change," IJERPH, MDPI, vol. 16(5), pages 1-21, February.
    6. Hui Zhao & Xuyong Li & Yan Jiang, 2019. "Response of Nitrogen Losses to Excessive Nitrogen Fertilizer Application in Intensive Greenhouse Vegetable Production," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    7. Zhang, Yajun & Wang, Weilu & Li, Siyu & Zhu, Kuanyu & Hua, Xia & Harrison, Matthew Tom & Liu, Ke & Yang, Jianchang & Liu, Lijun & Chen, Yun, 2023. "Integrated management approaches enabling sustainable rice production under alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 281(C).
    8. Ma, Dedi & Chen, Lei & Qu, Hongchao & Wang, Yilin & Misselbrook, Tom & Jiang, Rui, 2018. "Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 202(C), pages 166-173.
    9. Yingchun Li & Erda Lin & Xue Han & Zhengping Peng & Wen Wang & Xingyu Hao & Hui Ju, 2015. "Effects of elevated carbon dioxide concentration on nitrous oxide emissions and nitrogen dynamics in a winter-wheat cropping system in northern China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1027-1040, October.
    10. Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    11. Xiang Liu & Haiyan Sheng & Zhaoqi Wang & Zhiwen Ma & Xiaotao Huang & Lanhai Li, 2020. "Does Grazing Exclusion Improve Soil Carbon and Nitrogen Stocks in Alpine Grasslands on the Qinghai-Tibetan Plateau? A Meta-Analysis," Sustainability, MDPI, vol. 12(3), pages 1-13, January.
    12. Oana Georgiana SECUIAN & Anamaria Gabriela VLAD & Mihaela VLAD, 2021. "Smart city a solution for dealing with climate change in European cities," Smart Cities International Conference (SCIC) Proceedings, Smart-EDU Hub, Faculty of Public Administration, National University of Political Studies & Public Administration, vol. 9, pages 285-296, November.
    13. Wen Chiat Lee & Nicholas Hoe & K. Kuperan Viswanathan & Amir Hussin Baharuddin, 2020. "An Economic Analysis Of Anthropogenic Climate Change On Rice Production In Malaysia," Malaysian Journal of Sustainable Agriculture (MJSA), Zibeline International Publishing, vol. 4(1), pages 1-4, January.
    14. Xinzhang Song & Changhui Peng & Hong Jiang & Qiuan Zhu & Weifeng Wang, 2013. "Direct and Indirect Effects of UV-B Exposure on Litter Decomposition: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-1, June.
    15. Xiaomin Lv & Guangsheng Zhou, 2018. "Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    16. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Integrated Circulating Fluidized Bed Gasification System for Sustainable Municipal Solid Waste Management: Energy Production and Heat Recovery," Energies, MDPI, vol. 16(13), pages 1-23, July.
    17. Yao, Yao & Li, Guang & Lu, Yanhua & Liu, Shuainan, 2023. "Modelling the impact of climate change and tillage practices on soil CO2 emissions from dry farmland in the Loess Plateau of China," Ecological Modelling, Elsevier, vol. 478(C).
    18. Zhang, Guangxin & Mo, Fei & Shah, Farooq & Meng, Wenhui & Liao, Yuncheng & Han, Juan, 2021. "Ridge-furrow configuration significantly improves soil water availability, crop water use efficiency, and grain yield in dryland agroecosystems of the Loess Plateau," Agricultural Water Management, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1098-:d:872221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.