IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v351y2017icp96-108.html
   My bibliography  Save this article

Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems

Author

Listed:
  • Lafuite, A.-S.
  • Loreau, M.

Abstract

The sustainability of coupled social-ecological systems (SESs) hinges on their long-term ecological dynamics. Land conversion generates extinction and functioning debts, i.e. a time-delayed loss of species and associated ecosystem services. Sustainability theory, however, has not so far considered the long-term consequences of these ecological debts on SESs. We investigate this question using a dynamical model that couples human demography, technological change and biodiversity. Human population growth drives land conversion, which in turn reduces biodiversity-dependent ecosystem services to agricultural production (ecological feedback). Technological change brings about a demographic transition leading to a population equilibrium. When the ecological feedback is delayed in time, some SESs experience population overshoots followed by large reductions in biodiversity, human population size and well-being, which we call environmental crises. Using a sustainability criterion that captures the vulnerability of an SES to such crises, we show that some of the characteristics common to modern SESs (e.g. high production efficiency and labor intensity, concave-down ecological relationships) are detrimental to their long-term sustainability. Maintaining sustainability thus requires strong counteracting forces, such as the demographic transition and land-use management. To this end, we provide integrative sustainability thresholds for land conversion, biodiversity loss and human population size - each threshold being related to the others through the economic, technological, demographic and ecological parameters of the SES. Numerical simulations show that remaining within these sustainable boundaries prevents environmental crises from occurring. By capturing the long-term ecological and socio-economic drivers of SESs, our theoretical approach proposes a new way to define integrative conservation objectives that ensure the long-term sustainability of our planet.

Suggested Citation

  • Lafuite, A.-S. & Loreau, M., 2017. "Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems," Ecological Modelling, Elsevier, vol. 351(C), pages 96-108.
  • Handle: RePEc:eee:ecomod:v:351:y:2017:i:c:p:96-108
    DOI: 10.1016/j.ecolmodel.2017.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016307128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brander, James A & Taylor, M Scott, 1998. "The Simple Economics of Easter Island: A Ricardo-Malthus Model of Renewable Resource Use," American Economic Review, American Economic Association, vol. 88(1), pages 119-138, March.
    2. David U. Hooper & E. Carol Adair & Bradley J. Cardinale & Jarrett E. K. Byrnes & Bruce A. Hungate & Kristin L. Matulich & Andrew Gonzalez & J. Emmett Duffy & Lars Gamfeldt & Mary I. O’Connor, 2012. "A global synthesis reveals biodiversity loss as a major driver of ecosystem change," Nature, Nature, vol. 486(7401), pages 105-108, June.
    3. James A. Brander, 2007. "Viewpoint: Sustainability: Malthus revisited?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(1), pages 1-38, February.
    4. Oscar Venter & Eric W. Sanderson & Ainhoa Magrach & James R. Allan & Jutta Beher & Kendall R. Jones & Hugh P. Possingham & William F. Laurance & Peter Wood & Balázs M. Fekete & Marc A. Levy & James E., 2016. "Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    5. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A. Wardle & Ann P. Kinzig & Gre, 2012. "Biodiversity loss and its impact on humanity," Nature, Nature, vol. 486(7401), pages 59-67, June.
    6. Robert J. Gordon, 2012. "Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six Headwinds," NBER Working Papers 18315, National Bureau of Economic Research, Inc.
    7. Pietro Peretto & Simone Valente, 2015. "Growth on a finite planet: resources, technology and population in the long run," Journal of Economic Growth, Springer, vol. 20(3), pages 305-331, September.
    8. Kumar, Praduman & Mittal, Surabhi & Hossain, Mahabub, 2008. "Agricultural Growth Accounting and Total Factor Productivity in South Asia: A Review and Policy Implications," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 21(2).
    9. Kogel, Tomas & Prskawetz, Alexia, 2001. "Agricultural Productivity Growth and Escape from the Malthusian Trap," Journal of Economic Growth, Springer, vol. 6(4), pages 337-357, December.
    10. David N. Weil & Oded Galor, 2000. "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," American Economic Review, American Economic Association, vol. 90(4), pages 806-828, September.
    11. Gallai, Nicola & Salles, Jean-Michel & Settele, Josef & Vaissière, Bernard E., 2009. "Economic valuation of the vulnerability of world agriculture confronted with pollinator decline," Ecological Economics, Elsevier, vol. 68(3), pages 810-821, January.
    12. Barrios, Edmundo, 2007. "Soil biota, ecosystem services and land productivity," Ecological Economics, Elsevier, vol. 64(2), pages 269-285, December.
    13. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    14. R. J. Scholes & R. Biggs, 2005. "A biodiversity intactness index," Nature, Nature, vol. 434(7029), pages 45-49, March.
    15. Nordhaus, William D, 1993. "Optimal Greenhouse-Gas Reductions and Tax Policy in the "Dice" Model," American Economic Review, American Economic Association, vol. 83(2), pages 313-317, May.
    16. Keith O. Fuglie, 2008. "Is a slowdown in agricultural productivity growth contributing to the rise in commodity prices?," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 431-441, November.
    17. Anderies, John M., 2003. "Economic development, demographics, and renewable resources: a dynamical systems approach," Environment and Development Economics, Cambridge University Press, vol. 8(2), pages 219-246, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuelle Augeraud-Véron & Giorgio Fabbri & Katheline Schubert, 2019. "The Value of Biodiversity as an Insurance Device," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(4), pages 1068-1081.
    2. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Volatility-reducing biodiversity conservation under strategic interactions," Ecological Economics, Elsevier, vol. 190(C).
    3. Bosi, Stefano & Desmarchelier, David, 2018. "An economic model of metapopulation dynamics," Ecological Modelling, Elsevier, vol. 387(C), pages 196-204.
    4. Luo, Xiangyu & Jiang, Peng & Yang, Jingyi & Jin, Jing & Yang, Jun, 2021. "Simulating PM2.5 removal in an urban ecosystem based on the social-ecological model framework," Ecosystem Services, Elsevier, vol. 47(C).
    5. Eppinga, Maarten B. & de Boer, Hugo J. & Reader, Martin O. & Anderies, John M. & Santos, Maria J., 2023. "Environmental change and ecosystem functioning drive transitions in social-ecological systems: A stylized modelling approach," Ecological Economics, Elsevier, vol. 211(C).
    6. Maroto, José M. & Morán, Manuel, 2019. "Transient dynamics: Equilibrium, collapse, and extinction in age-structured models. The case of the Northern cod stock," Ecological Modelling, Elsevier, vol. 398(C), pages 35-43.
    7. Bengochea Paz, Diego & Henderson, Kirsten & Loreau, Michel, 2020. "Agricultural land use and the sustainability of social-ecological systems," Ecological Modelling, Elsevier, vol. 437(C).
    8. Lafuite, A.-S. & Denise, G. & Loreau, M., 2018. "Sustainable Land-use Management Under Biodiversity Lag Effects," Ecological Economics, Elsevier, vol. 154(C), pages 272-281.
    9. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    10. Zaiwu Gong & Lihong Wang, 2017. "On Consistency Test Method of Expert Opinion in Ecological Security Assessment," IJERPH, MDPI, vol. 14(9), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lafuite, A.-S. & Denise, G. & Loreau, M., 2018. "Sustainable Land-use Management Under Biodiversity Lag Effects," Ecological Economics, Elsevier, vol. 154(C), pages 272-281.
    2. Nagase, Yoko & Uehara, Takuro, 2011. "Evolution of population-resource dynamics models," Ecological Economics, Elsevier, vol. 72(C), pages 9-17.
    3. Nils‐Petter Lagerlöf & Thomas Tangerås, 2008. "From rent seeking to human capital: a model where resource shocks cause transitions from stagnation to growth," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(3), pages 760-780, August.
    4. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    5. Bruno Lanz & Simon Dietz & Timothy Swanson, 2017. "Global Population Growth, Technology, And Malthusian Constraints: A Quantitative Growth Theoretic Perspective," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(3), pages 973-1006, August.
    6. Pietro F. Peretto & Simone Valente, 2021. "Growth with Deadly Spillovers," University of East Anglia School of Economics Working Paper Series 2021-05, School of Economics, University of East Anglia, Norwich, UK..
    7. Antony, Jürgen & Klarl, Torben, 2022. "Poverty and sustainable development around the world during transition periods," Energy Economics, Elsevier, vol. 110(C).
    8. T. Ryan Johnson & Dietrich Vollrath, 2017. "How Tight are Malthusian Constraints?," Working Papers 2017-192-55, Department of Economics, University of Houston.
    9. Rohan Dutta & David K. Levine & Nicholas W. Papageorge & Lemin Wu, 2018. "Entertaining Malthus: Bread, Circuses, And Economic Growth," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 358-380, January.
    10. Lanz, Bruno & Dietz, Simon & Swanson, Tim, 2018. "The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment," Ecological Economics, Elsevier, vol. 144(C), pages 260-277.
    11. Pietro Peretto & Simone Valente, 2015. "Growth on a finite planet: resources, technology and population in the long run," Journal of Economic Growth, Springer, vol. 20(3), pages 305-331, September.
    12. Berck, Peter & Levy, Amnon & Chowdhury, Khorshed, 2012. "An analysis of the world's environment and population dynamics with varying carrying capacity, concerns and skepticism," Ecological Economics, Elsevier, vol. 73(C), pages 103-112.
    13. Nils-Petter Lagerlöf, 2006. "The Galor-Weil Model Revisited: A Quantitative Exercise," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 9(1), pages 116-142, January.
    14. Brunnschweiler, Christa N. & Peretto, Pietro F. & Valente, Simone, 2021. "Wealth creation, wealth dilution and demography," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 441-459.
    15. Liu, Wenjing & Wang, Jingsheng & Li, Chao & Chen, Baoxiong & Sun, Yufang, 2019. "Using Bibliometric Analysis to Understand the Recent Progress in Agroecosystem Services Research," Ecological Economics, Elsevier, vol. 156(C), pages 293-305.
    16. T. Ryan Johnson & Dietrich Vollrath, 2020. "The Role of Land in Temperate and Tropical Agriculture," Economica, London School of Economics and Political Science, vol. 87(348), pages 901-937, October.
    17. Naso, Pedro & Lanz, Bruno & Swanson, Tim, 2020. "The return of Malthus? Resource constraints in an era of declining population growth," European Economic Review, Elsevier, vol. 128(C).
    18. Eppinga, Maarten B. & de Boer, Hugo J. & Reader, Martin O. & Anderies, John M. & Santos, Maria J., 2023. "Environmental change and ecosystem functioning drive transitions in social-ecological systems: A stylized modelling approach," Ecological Economics, Elsevier, vol. 211(C).
    19. Matthias Doepke, "undated". "Growth Takeoffs," UCLA Economics Online Papers 409, UCLA Department of Economics.
    20. Dietrich Vollrath, 2009. "The dual economy in long-run development," Journal of Economic Growth, Springer, vol. 14(4), pages 287-312, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:351:y:2017:i:c:p:96-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.