IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i11p2060-d975327.html
   My bibliography  Save this article

Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina

Author

Listed:
  • Juan Cruz Colazo

    (EEA San Luis, Instituto Nacional de Tecnología Agropecuaria (INTA), Villa Mercedes 5730, Argentina)

  • Juan de Dios Herrero

    (EEA Anguil, INTA, Anguil 6326, Argentina)

  • Ricardo Sager

    (EEA San Luis, Instituto Nacional de Tecnología Agropecuaria (INTA), Villa Mercedes 5730, Argentina)

  • Maria Laura Guzmán

    (EEA San Luis, Instituto Nacional de Tecnología Agropecuaria (INTA), Villa Mercedes 5730, Argentina)

  • Mohammad Zaman

    (Soil and Water Management & Crop Nutrition Section, International Atomic Energy Agency (IAEA), 1400 Vienna, Austria)

Abstract

Integrated crop-livestock system (ICLS) is a useful practice to enhance soil organic carbon (SOC) compared to continuous cropping systems (CC). However, robust data from different regions around the world remain to be collected. So, our objectives were to (i) compare SOC and its physical fractions in ICLS and CC, and (ii) evaluate the use of δ 13 C to identify the source of C of SOC in these systems in the Pampas region of Argentina. For that, we compared two farms, an ICLS and a CC having the same soil type and landscape position. The ICLS farm produces alfalfa grazed alternatively with soybean and corn, and the CC farm produces the latter two crops in a continuous sequence. Soil samples (0–5, 5–20, 20–40, and 40–60 cm) were collected and analyzed for SOC, its physical fractions, and their isotopic signature (δ 13 C). Soils under ICLS showed an increment of 50% of SOC stock compared to CC in the first 60 cm. This increase was related to 100–2000 µm fractions of SOC. The shift in δ 13 C signature is more in ICLS than in CC, suggesting that rotation with C3 legumes contributed to C sequestration and, therefore, climate-smart agriculture. The combination of on-farm research and isotopic technique can help to study deeply the effect of real farm practices on soil carbon derived from pasture.

Suggested Citation

  • Juan Cruz Colazo & Juan de Dios Herrero & Ricardo Sager & Maria Laura Guzmán & Mohammad Zaman, 2022. "Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina," Land, MDPI, vol. 11(11), pages 1-11, November.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:2060-:d:975327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/11/2060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/11/2060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Man Liu & Guilin Han & Qian Zhang & Zhaoliang Song, 2019. "Variations and Indications of δ 13 C SOC and δ 15 N SON in Soil Profiles in Karst Critical Zone Observatory (CZO), Southwest China," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    2. David S. Powlson & Clare M. Stirling & M. L. Jat & Bruno G. Gerard & Cheryl A. Palm & Pedro A. Sanchez & Kenneth G. Cassman, 2014. "Limited potential of no-till agriculture for climate change mitigation," Nature Climate Change, Nature, vol. 4(8), pages 678-683, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deyvison de Asevedo Soares & Bianca Midori Souza Sekiya & Viviane Cristina Modesto & Allan Hisashi Nakao & Leandro Alves Freitas & Isabela Malaquias Dalto de Souza & João Henrique Silva da Luz & Ferna, 2023. "Accumulated Carbon Fractions in Tropical Sandy Soils and Their Effects on Fertility and Grain Yield in an Integrated Crop–Livestock System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. OKORIE, Benedict Odinaka & NIRAJ, Yadav, 2022. "Effects Of Different Tillage Practices On Soil Fertility Properties: A Review," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(1), February.
    2. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    3. Veltman, Karin & Rotz, C. Alan & Chase, Larry & Cooper, Joyce & Ingraham, Pete & Izaurralde, R. César & Jones, Curtis D. & Gaillard, Richard & Larson, Rebecca A. & Ruark, Matt & Salas, William & Thoma, 2018. "A quantitative assessment of Beneficial Management Practices to reduce carbon and reactive nitrogen footprints and phosphorus losses on dairy farms in the US Great Lakes region," Agricultural Systems, Elsevier, vol. 166(C), pages 10-25.
    4. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Qian Zhang & Guilin Han & Man Liu & Lingqing Wang, 2019. "Geochemical Characteristics of Rare Earth Elements in Soils from Puding Karst Critical Zone Observatory, Southwest China," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
    6. Jeetendra Prakash Aryal & Dil Bahadur Rahut & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri, 2020. "Climate change mitigation options among farmers in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3267-3289, April.
    7. Tang, Kai, 2024. "Agricultural adaptation to the environmental and social consequences of climate change in mixed farming systems: Evidence from North Xinjiang, China," Agricultural Systems, Elsevier, vol. 217(C).
    8. Chen, Le & Rejesus, Roderick M. & Aglasan, Serkan & Hagen, Stephen & Salas, William, 2022. "The Impact of No-Till Production on Agricultural Land Values in the US Midwest," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322445, Agricultural and Applied Economics Association.
    9. Jin Zhang & Lan-Fang Wu, 2021. "Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System," Agriculture, MDPI, vol. 11(3), pages 1-13, March.
    10. Francesco Calzarano & Fabio Stagnari & Sara D’Egidio & Giancarlo Pagnani & Angelica Galieni & Stefano Di Marco & Elisa Giorgia Metruccio & Michele Pisante, 2018. "Durum Wheat Quality, Yield and Sanitary Status under Conservation Agriculture," Agriculture, MDPI, vol. 8(9), pages 1-13, September.
    11. Wang, Yicheng & Tao, Fulu & Chen, Yi & Yin, Lichang, 2024. "Climate mitigation potential and economic costs of natural climate solutions for main cropping systems across China," Agricultural Systems, Elsevier, vol. 218(C).
    12. Parihar, C.M. & Meena, B.R. & Nayak, Hari Sankar & Patra, K. & Sena, D.R. & Singh, Raj & Jat, S.L. & Sharma, D.K. & Mahala, D.M. & Patra, S. & Rupesh, & Rathi, N. & Choudhary, M. & Jat, M.L. & Abdalla, 2022. "Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus," Energy, Elsevier, vol. 254(PB).
    13. Daniel El Chami & André Daccache & Maroun El Moujabber, 2020. "How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    14. Timothy E. Crews & Brian E. Rumsey, 2017. "What Agriculture Can Learn from Native Ecosystems in Building Soil Organic Matter: A Review," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    15. Liangang Xiao & Minglei Ding & Chong Wei & Ruiming Zhu & Rongqin Zhao, 2020. "The Impacts of Conservation Agriculture on Water Use and Crop Production on the Loess Plateau: From Know-What to Know-Why," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    16. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    17. Sihvonen, Matti & Pihlainen, Sampo & Lai, Tin-Yu & Salo, Tapio & Hyytiäinen, Kari, 2021. "Crop production, water pollution, or climate change mitigation—Which drives socially optimal fertilization management most?," Agricultural Systems, Elsevier, vol. 186(C).
    18. Zandersen, Marianne & Jørgensen, Sisse Liv & Nainggolan, Doan & Gyldenkærne, Steen & Winding, Anne & Greve, Mogens Humlekrog & Termansen, Mette, 2016. "Potential and economic efficiency of using reduced tillage to mitigate climate effects in Danish agriculture," Ecological Economics, Elsevier, vol. 123(C), pages 14-22.
    19. Wenxiang Zhou & Guilin Han & Man Liu & Chao Song & Xiaoqiang Li & Fairda Malem, 2020. "Vertical Distribution and Controlling Factors Exploration of Sc, V, Co, Ni, Mo and Ba in Six Soil Profiles of The Mun River Basin, Northeast Thailand," IJERPH, MDPI, vol. 17(5), pages 1-14, March.
    20. Iñigo Virto & María José Imaz & Oihane Fernández-Ugalde & Nahia Gartzia-Bengoetxea & Alberto Enrique & Paloma Bescansa, 2014. "Soil Degradation and Soil Quality in Western Europe: Current Situation and Future Perspectives," Sustainability, MDPI, vol. 7(1), pages 1-53, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:2060-:d:975327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.