IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i3p265-d520705.html
   My bibliography  Save this article

Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System

Author

Listed:
  • Jin Zhang

    (Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lan-Fang Wu

    (Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Weeds are often harmful to crop growth due to the competition for space and resources. A field experiment containing four treatments with three replications in a complete randomized design was conducted at Yucheng Comprehensive Experiment Station, Chinese Academy of Sciences since 2008 to assess the impact of shifting from conventional tillage to no-till with crop residue management on weeds and wheat production at the North China Plain. We found that both aboveground weed density and species richness were higher under continuous no-till (NT) than conventional tillage (CT) in the regrowth and stem elongation stage of wheat growth. On the other hand, aboveground weed density in the stage of flowering and filling decreased with crop residue mulching. The density of the soil seed bank in crop residue removal treatments was significantly higher than that of crop residue retention. Besides, either crop residue mulching or incorporating into the soil significantly increased the wheat yield compared with crop residue removal regardless of tillage management. In conclusion, crop residue retention could decrease the weed density and species richness both aboveground and in the soil seed bank and inhibit the growth of broadleaf weeds by the residue layer. Moreover, crop residue retention could improve the wheat yield.

Suggested Citation

  • Jin Zhang & Lan-Fang Wu, 2021. "Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System," Agriculture, MDPI, vol. 11(3), pages 1-13, March.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:3:p:265-:d:520705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/3/265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/3/265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lindh, Magnus & Zhang, Lai & Falster, Daniel & Franklin, Oskar & Brännström, Åke, 2014. "Plant diversity and drought: The role of deep roots," Ecological Modelling, Elsevier, vol. 290(C), pages 85-93.
    2. David S. Powlson & Clare M. Stirling & M. L. Jat & Bruno G. Gerard & Cheryl A. Palm & Pedro A. Sanchez & Kenneth G. Cassman, 2014. "Limited potential of no-till agriculture for climate change mitigation," Nature Climate Change, Nature, vol. 4(8), pages 678-683, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Wang, Yicheng & Tao, Fulu & Chen, Yi & Yin, Lichang, 2024. "Climate mitigation potential and economic costs of natural climate solutions for main cropping systems across China," Agricultural Systems, Elsevier, vol. 218(C).
    3. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    4. Lindh, Magnus & Manzoni, Stefano, 2021. "Plant evolution along the ‘fast–slow’ growth economics spectrum under altered precipitation regimes," Ecological Modelling, Elsevier, vol. 448(C).
    5. Sihvonen, Matti & Pihlainen, Sampo & Lai, Tin-Yu & Salo, Tapio & Hyytiäinen, Kari, 2021. "Crop production, water pollution, or climate change mitigation—Which drives socially optimal fertilization management most?," Agricultural Systems, Elsevier, vol. 186(C).
    6. Zandersen, Marianne & Jørgensen, Sisse Liv & Nainggolan, Doan & Gyldenkærne, Steen & Winding, Anne & Greve, Mogens Humlekrog & Termansen, Mette, 2016. "Potential and economic efficiency of using reduced tillage to mitigate climate effects in Danish agriculture," Ecological Economics, Elsevier, vol. 123(C), pages 14-22.
    7. Aslam, Uzma & Termansen, Mette & Fleskens, Luuk, 2017. "Investigating farmers’ preferences for alternative PES schemes for carbon sequestration in UK agroecosystems," Ecosystem Services, Elsevier, vol. 27(PA), pages 103-112.
    8. Ngoma, Hambulo & Angelsen, Arild, 2017. "Can conservation agriculture save tropical forests? The case of minimum tillage in Zambia," Working Paper Series 02-2017, Norwegian University of Life Sciences, School of Economics and Business.
    9. Hou, Dawei & Meng, Fanhao & Ji, Chao & Xie, Li & Zhu, Wenjuan & Wang, Shizhong & Sun, Hua, 2022. "Linking food production and environmental outcomes: An application of a modified relative risk model to prioritize land-management practices," Agricultural Systems, Elsevier, vol. 196(C).
    10. Josue De Los Rios & Arne Poyda & Friedhelm Taube & Christof Kluß & Ralf Loges & Thorsten Reinsch, 2022. "No-Till Mitigates SOC Losses after Grassland Renovation and Conversion to Silage Maize," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    11. Huang, Yawen & Tao, Bo & Yang, Yanjun & Zhu, Xiaochen & Yang, Xiaojuan & Grove, John H. & Ren, Wei, 2022. "Simulating no-tillage effects on crop yield and greenhouse gas emissions in Kentucky corn and soybean cropping systems: 1980–2018," Agricultural Systems, Elsevier, vol. 197(C).
    12. Bos, Jules F.F.P. & ten Berge, Hein F.M. & Verhagen, Jan & van Ittersum, Martin K., 2017. "Trade-offs in soil fertility management on arable farms," Agricultural Systems, Elsevier, vol. 157(C), pages 292-302.
    13. Fatima Haque & Yi Wai Chiang & Rafael M. Santos, 2019. "Alkaline Mineral Soil Amendment: A Climate Change ‘Stabilization Wedge’?," Energies, MDPI, vol. 12(12), pages 1-17, June.
    14. Alessandro Agostini & Ferdinando Battini & Jacopo Giuntoli & Vincenzo Tabaglio & Monica Padella & David Baxter & Luisa Marelli & Stefano Amaducci, 2015. "Environmentally Sustainable Biogas? The Key Role of Manure Co-Digestion with Energy Crops," Energies, MDPI, vol. 8(6), pages 1-32, June.
    15. Jialing Teng & Ruixing Hou & Jennifer A. J. Dungait & Guiyao Zhou & Yakov Kuzyakov & Jingbo Zhang & Jing Tian & Zhenling Cui & Fusuo Zhang & Manuel Delgado-Baquerizo, 2024. "Conservation agriculture improves soil health and sustains crop yields after long-term warming," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Glenk, Klaus & Shrestha, Shailesh & Topp, Cairstiona F.E. & Sánchez, Berta & Iglesias, Ana & Dibari, Camilla & Merante, Paolo, 2017. "A farm level approach to explore farm gross margin effects of soil organic carbon management," Agricultural Systems, Elsevier, vol. 151(C), pages 33-46.
    17. Ravjit Khangura & David Ferris & Cameron Wagg & Jamie Bowyer, 2023. "Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health," Sustainability, MDPI, vol. 15(3), pages 1-41, January.
    18. Bhim Bahadur Ghaley & Teodor Rusu & Taru Sandén & Heide Spiegel & Cristina Menta & Giovanna Visioli & Lilian O’Sullivan & Isabelle Trinsoutrot Gattin & Antonio Delgado & Mark A. Liebig & Dirk Vrebos &, 2018. "Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    19. OKORIE, Benedict Odinaka & NIRAJ, Yadav, 2022. "Effects Of Different Tillage Practices On Soil Fertility Properties: A Review," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(01), February.
    20. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:3:p:265-:d:520705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.