IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs036054422201146x.html
   My bibliography  Save this article

Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus

Author

Listed:
  • Parihar, C.M.
  • Meena, B.R.
  • Nayak, Hari Sankar
  • Patra, K.
  • Sena, D.R.
  • Singh, Raj
  • Jat, S.L.
  • Sharma, D.K.
  • Mahala, D.M.
  • Patra, S.
  • Rupesh,
  • Rathi, N.
  • Choudhary, M.
  • Jat, M.L.
  • Abdallah, Ahmed M.

Abstract

The conventionally managed cereal-based cropping systems in the Indo-Gangetic Plains (IGP) of South Asia are energy intensive that overwhelm the farm profits and the environmental footprint. This research addresses a complex nexus between yield-energy-water-GHG footprints-economics of conservation agriculture (CA)-based intensified maize-wheat-mungbean rotation. This study evaluated the effect of long-term CA (2012–2020) with optimum nutrient management (2017–20) on energy budgeting, productivity, water and C-footprints, Water productivity (WP), and economics of the CA-based maize-wheat-mungbean system. CA-based permanent bed- and zero tillage flatbed with preceding crop residue retention were compared with the conventional till with preceding crop residue incorporation. These treatments were factored over three-nutrient management alternatives, i.e., GreenSeeker®-guided-N, site-specific nutrient management (SSNM), and recommended fertilizers' dose (Ad-hoc), were compared with farmers' fertilizers practices (FFP). Permanent bed and zero tillage treatments registered higher systems' productivity (18.2 and 12.0%), net returns (44.7 and 34.7%) and water productivity (35.6% and 22.1%), and C-sequestration (54.8 and 62.3%), respectively, over conventional till. Permanent bed- and zero tillage treatments increased the systems' net energy (NE), energy use efficiency (EUE), energy productivity (EP), and energy intensity (EI) by 22.6 and 14.0; 10.1 and 5.6; 9.7 and 5.4; 28.3 and 24.0%, respectively, over conventional till. Conventional till recorded higher net CO2-eq emission (26.5 and 27.2%), C-footprint (20.8 and 14.5%), and water footprint (27.3 and 18.0%) than permanent bed- and zero tillage treatments. SSNM increased the system's productivity, water productivity, and energy use efficiency, while reducing the system's water- and C-footprints and net CO2-eq emission. Thus, adopting permanent beds as a crop establishment method with SSNM could be a feasible alternative to attain higher productivity, profitability, and resource use efficiency in the maize-wheat-mungbean system in northwest India.

Suggested Citation

  • Parihar, C.M. & Meena, B.R. & Nayak, Hari Sankar & Patra, K. & Sena, D.R. & Singh, Raj & Jat, S.L. & Sharma, D.K. & Mahala, D.M. & Patra, S. & Rupesh, & Rathi, N. & Choudhary, M. & Jat, M.L. & Abdalla, 2022. "Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s036054422201146x
    DOI: 10.1016/j.energy.2022.124243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201146X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaudhary, V.P. & Singh, K.K. & Pratibha, G. & Bhattacharyya, Ranjan & Shamim, M. & Srinivas, I. & Patel, Anurag, 2017. "Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation," Energy, Elsevier, vol. 130(C), pages 307-317.
    2. Yadav, Gulab Singh & Das, Anup & Kandpal, B K & Babu, Subhash & Lal, Rattan & Datta, Mrinmoy & Das, Biswajit & Singh, Raghavendra & Singh, VK & Mohapatra, KP & Chakraborty, Mandakranta, 2021. "The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Saad, A.A. & Das, T.K. & Rana, D.S. & Sharma, A.R. & Bhattacharyya, Ranjan & Lal, Krishan, 2016. "Energy auditing of a maize–wheat–greengram cropping system under conventional and conservation agriculture in irrigated north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 116(P1), pages 293-305.
    4. Parihar, C.M. & Jat, S.L. & Singh, A.K. & Kumar, B. & Rathore, N.S. & Jat, M.L. & Saharawat, Y.S. & Kuri, B.R., 2018. "Energy auditing of long-term conservation agriculture based irrigated intensive maize systems in semi-arid tropics of India," Energy, Elsevier, vol. 142(C), pages 289-302.
    5. Mangi Lal Jat & Debashis Chakraborty & Jagdish Kumar Ladha & Dharamvir Singh Rana & Mahesh Kumar Gathala & Andrew McDonald & Bruno Gerard, 2020. "Conservation agriculture for sustainable intensification in South Asia," Nature Sustainability, Nature, vol. 3(4), pages 336-343, April.
    6. Jat, H.S. & Jat, R.D. & Nanwal, R.K. & Lohan, Shiv Kumar & Yadav, A.K. & Poonia, Tanuja & Sharma, P.C. & Jat, M.L., 2020. "Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India," Renewable Energy, Elsevier, vol. 155(C), pages 1372-1382.
    7. Gathala, Mahesh K. & Laing, Alison M. & Tiwari, T.P. & Timsina, J. & Islam, Md. S. & Chowdhury, A.K. & Chattopadhyay, C. & Singh, A.K. & Bhatt, B.P. & Shrestha, R. & Barma, N.C.D. & Rana, D.S. & Jacks, 2020. "Enabling smallholder farmers to sustainably improve their food, energy and water nexus while achieving environmental and economic benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Parihar, C.M. & Jat, S.L. & Singh, A.K. & Majumdar, K. & Jat, M.L. & Saharawat, Y.S. & Pradhan, S. & Kuri, B.R., 2017. "Bio-energy, water-use efficiency and economics of maize-wheat-mungbean system under precision-conservation agriculture in semi-arid agro-ecosystem," Energy, Elsevier, vol. 119(C), pages 245-256.
    9. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Rathnayake, W.M.U.K. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2017. "Improving water productivity in moisture-limited rice-based cropping systems through incorporation of maize and mungbean: A modelling approach," Agricultural Water Management, Elsevier, vol. 189(C), pages 111-122.
    10. David S. Powlson & Clare M. Stirling & M. L. Jat & Bruno G. Gerard & Cheryl A. Palm & Pedro A. Sanchez & Kenneth G. Cassman, 2014. "Limited potential of no-till agriculture for climate change mitigation," Nature Climate Change, Nature, vol. 4(8), pages 678-683, August.
    11. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hua, En & Han, Xinxueqi & Bai, Yawen & Engel, Bernard A. & Li, Xin & Sun, Shikun & Wang, Yubao, 2023. "Synergy of water use in water-energy-food nexus from a symbiosis perspective: A case study in China," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meena, Ram Swaroop & Pradhan, Gourisankar & Kumar, Sandeep & Lal, Rattan, 2023. "Using industrial wastes for rice-wheat cropping and food-energy-carbon-water-economic nexus to the sustainable food system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
    3. Yadav, Gulab Singh & Das, Anup & Kandpal, B K & Babu, Subhash & Lal, Rattan & Datta, Mrinmoy & Das, Biswajit & Singh, Raghavendra & Singh, VK & Mohapatra, KP & Chakraborty, Mandakranta, 2021. "The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Dutta, S. K & Laing, Alison M. & Kumar, S. & Gathala, Mahesh K. & Singh, Ajoy K. & Gaydon, D.S. & Poulton, P., 2020. "Improved water management practices improve cropping system profitability and smallholder farmers’ incomes," Agricultural Water Management, Elsevier, vol. 242(C).
    5. Dutta, S.K. & Laing, Alison & Kumar, Sanjay & Shambhavi, Shweta & Kumar, Sunil & Kumar, Birender & Verma, D.K. & Kumar, Arun & Singh, Ravi Gopal & Gathala, Mahesh, 2023. "Sustainability, productivity, profitability and nutritional diversity of six cropping systems under conservation agriculture: A long term study in eastern India," Agricultural Systems, Elsevier, vol. 207(C).
    6. Singh, Ranbir & Singh, Ajay & Sheoran, Parvender & Fagodiya, R.K. & Rai, Arvind Kumar & Chandra, Priyanka & Rani, Sonia & Yadav, Rajender Kumar & Sharma, P.C., 2022. "Energy efficiency and carbon footprints of rice-wheat system under long-term tillage and residue management practices in western Indo-Gangetic Plains in India," Energy, Elsevier, vol. 244(PA).
    7. Sanjay Singh Rathore & Subhash Babu & Kapila Shekhawat & Vinod K. Singh & Pravin Kumar Upadhyay & Rajiv Kumar Singh & Rishi Raj & Harveer Singh & Fida Mohammad Zaki, 2022. "Oilseed Brassica Species Diversification and Crop Geometry Influence the Productivity, Economics, and Environmental Footprints under Semi-Arid Regions," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    8. Jat, H.S. & Jat, R.D. & Nanwal, R.K. & Lohan, Shiv Kumar & Yadav, A.K. & Poonia, Tanuja & Sharma, P.C. & Jat, M.L., 2020. "Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India," Renewable Energy, Elsevier, vol. 155(C), pages 1372-1382.
    9. Feng, Meiqing & Chen, Yaning & Duan, Weili & Fang, Gonghuan & li, Zhi & Jiao, Li & Sun, Fan & Li, Yupeng & Hou, Yifeng, 2022. "Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    10. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
    11. Parihar, C.M. & Jat, S.L. & Singh, A.K. & Kumar, B. & Rathore, N.S. & Jat, M.L. & Saharawat, Y.S. & Kuri, B.R., 2018. "Energy auditing of long-term conservation agriculture based irrigated intensive maize systems in semi-arid tropics of India," Energy, Elsevier, vol. 142(C), pages 289-302.
    12. Kakraliya, S.K. & Jat, H.S. & Singh, Ishwar & Sapkota, Tek B. & Singh, Love K. & Sutaliya, Jhabar M. & Sharma, Parbodh C. & Jat, R.D. & Choudhary, Meena & Lopez-Ridaura, Santiago & Jat, M.L., 2018. "Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains," Agricultural Water Management, Elsevier, vol. 202(C), pages 122-133.
    13. Jialing Teng & Ruixing Hou & Jennifer A. J. Dungait & Guiyao Zhou & Yakov Kuzyakov & Jingbo Zhang & Jing Tian & Zhenling Cui & Fusuo Zhang & Manuel Delgado-Baquerizo, 2024. "Conservation agriculture improves soil health and sustains crop yields after long-term warming," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. repec:ags:aaea22:335953 is not listed on IDEAS
    15. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    16. Mohammad Mizanur Rahman & Mohammed Zia Uddin Kamal & Senaratne Ranamukhaarachchi & Mohammad Saiful Alam & Mohammad Khairul Alam & Mohammad Arifur Rahman Khan & Mohammad Moshiul Islam & Mohammad Ashraf, 2022. "Effects of Organic Amendments on Soil Aggregate Stability, Carbon Sequestration, and Energy Use Efficiency in Wetland Paddy Cultivation," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    17. OKORIE, Benedict Odinaka & NIRAJ, Yadav, 2022. "Effects Of Different Tillage Practices On Soil Fertility Properties: A Review," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(1), February.
    18. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    19. Chen, Lijun & Liu, Jingze & Guo, Fukang & Jing, Song & Chu, Boyu & Qu, Yuncan & Li, Wen & Zhang, Jiyu, 2024. "The impact of drip irrigation and phosphorus fertilizer on enhancing dimorphic seed production of Lespedeza potaninii in Northwest China," Agricultural Water Management, Elsevier, vol. 299(C).
    20. Hongyu Wang & Xiaolei Wang & Apurbo Sarkar & Lu Qian, 2021. "Evaluating the Impacts of Smallholder Farmer’s Participation in Modern Agricultural Value Chain Tactics for Facilitating Poverty Alleviation—A Case Study of Kiwifruit Industry in Shaanxi, China," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
    21. Vijay Pratap & Anchal Dass & Shiva Dhar & Subhash Babu & Vinod Kumar Singh & Raj Singh & Prameela Krishnan & Susama Sudhishri & Arti Bhatia & Sarvendra Kumar & Anil Kumar Choudhary & Renu Singh & Pram, 2022. "Co-Implementation of Tillage, Precision Nitrogen, and Water Management Enhances Water Productivity, Economic Returns, and Energy-Use Efficiency of Direct-Seeded Rice," Sustainability, MDPI, vol. 14(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s036054422201146x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.