IDEAS home Printed from https://ideas.repec.org/a/ags/ijaeri/333826.html
   My bibliography  Save this article

Effects Of Different Tillage Practices On Soil Fertility Properties: A Review

Author

Listed:
  • OKORIE, Benedict Odinaka
  • NIRAJ, Yadav

Abstract

Soil tillage is an important factor affecting soil fertility properties and crop yield. Tillage impact certain soil physical and chemical properties such as bulk density, soil porosity and waterholding capacity, infiltration rates, hydraulic conductivity, soil temperature, soil organic carbon, pH, CEC, available nitrogen, phosphorus and exchangeable potassium amongst others. The main objective of the present work was to compare the effect of no-tillage systems and the conventional tillage systems. Tillage systems can be generally categorized into plow tillage (conventional tillage), reduced tillage using chisel plow, disc plow, harrow disc or cultivators and no-till systems. Conservation tillage and its various types generally improve the soil quality indicators including soil organic carbon (SOC) storage. Whereas, conventional tillage practices give birth to a finer and loose-setting soil structure with a modified soil bulk density and soil moisture content, hence, causing loss of soil organic carbon and deterioration in other soil properties. Generally, soil fertility properties are more favourable with no-till than tillage-based systems. However, some researchers observed no significant effect of tillage methods (no-tillage and plow till) on bulk density (BD), pH and total porosity, while others found otherwise. The magnitude of these discrepancies could be due to the differences in crop species, soil properties, climatic characteristics and their complex interactions as well as tillage system adopted.

Suggested Citation

  • OKORIE, Benedict Odinaka & NIRAJ, Yadav, 2022. "Effects Of Different Tillage Practices On Soil Fertility Properties: A Review," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(01), February.
  • Handle: RePEc:ags:ijaeri:333826
    DOI: 10.22004/ag.econ.333826
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/333826/files/ijaer_08__12.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.333826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David S. Powlson & Clare M. Stirling & M. L. Jat & Bruno G. Gerard & Cheryl A. Palm & Pedro A. Sanchez & Kenneth G. Cassman, 2014. "Limited potential of no-till agriculture for climate change mitigation," Nature Climate Change, Nature, vol. 4(8), pages 678-683, August.
    2. Liu, S. & Yang, J.Y. & Zhang, X.Y. & Drury, C.F. & Reynolds, W.D. & Hoogenboom, G., 2013. "Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China," Agricultural Water Management, Elsevier, vol. 123(C), pages 32-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dutta, S. K & Laing, Alison M. & Kumar, S. & Gathala, Mahesh K. & Singh, Ajoy K. & Gaydon, D.S. & Poulton, P., 2020. "Improved water management practices improve cropping system profitability and smallholder farmers’ incomes," Agricultural Water Management, Elsevier, vol. 242(C).
    2. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    3. Shuang Liu & Yuru Gao & Huilin Lang & Yong Liu & Hong Zhang, 2022. "Effects of Conventional Tillage and No-Tillage Systems on Maize ( Zea mays L.) Growth and Yield, Soil Structure, and Water in Loess Plateau of China: Field Experiment and Modeling Studies," Land, MDPI, vol. 11(11), pages 1-14, October.
    4. Veltman, Karin & Rotz, C. Alan & Chase, Larry & Cooper, Joyce & Ingraham, Pete & Izaurralde, R. César & Jones, Curtis D. & Gaillard, Richard & Larson, Rebecca A. & Ruark, Matt & Salas, William & Thoma, 2018. "A quantitative assessment of Beneficial Management Practices to reduce carbon and reactive nitrogen footprints and phosphorus losses on dairy farms in the US Great Lakes region," Agricultural Systems, Elsevier, vol. 166(C), pages 10-25.
    5. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Jeetendra Prakash Aryal & Dil Bahadur Rahut & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri, 2020. "Climate change mitigation options among farmers in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3267-3289, April.
    7. Juan Cruz Colazo & Juan de Dios Herrero & Ricardo Sager & Maria Laura Guzmán & Mohammad Zaman, 2022. "Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina," Land, MDPI, vol. 11(11), pages 1-11, November.
    8. Tang, Kai, 2024. "Agricultural adaptation to the environmental and social consequences of climate change in mixed farming systems: Evidence from North Xinjiang, China," Agricultural Systems, Elsevier, vol. 217(C).
    9. Chen, Le & Rejesus, Roderick M. & Aglasan, Serkan & Hagen, Stephen & Salas, William, 2022. "The Impact of No-Till Production on Agricultural Land Values in the US Midwest," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322445, Agricultural and Applied Economics Association.
    10. Jin Zhang & Lan-Fang Wu, 2021. "Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System," Agriculture, MDPI, vol. 11(3), pages 1-13, March.
    11. Yang, J.M. & Yang, J.Y. & Liu, S. & Hoogenboom, G., 2014. "An evaluation of the statistical methods for testing the performance of crop models with observed data," Agricultural Systems, Elsevier, vol. 127(C), pages 81-89.
    12. Yang, Xuan & Zheng, Lina & Yang, Qian & Wang, Zikui & Cui, Song & Shen, Yuying, 2018. "Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using," Agricultural Systems, Elsevier, vol. 166(C), pages 111-123.
    13. Francesco Calzarano & Fabio Stagnari & Sara D’Egidio & Giancarlo Pagnani & Angelica Galieni & Stefano Di Marco & Elisa Giorgia Metruccio & Michele Pisante, 2018. "Durum Wheat Quality, Yield and Sanitary Status under Conservation Agriculture," Agriculture, MDPI, vol. 8(9), pages 1-13, September.
    14. Wang, Yicheng & Tao, Fulu & Chen, Yi & Yin, Lichang, 2024. "Climate mitigation potential and economic costs of natural climate solutions for main cropping systems across China," Agricultural Systems, Elsevier, vol. 218(C).
    15. Parihar, C.M. & Meena, B.R. & Nayak, Hari Sankar & Patra, K. & Sena, D.R. & Singh, Raj & Jat, S.L. & Sharma, D.K. & Mahala, D.M. & Patra, S. & Rupesh, & Rathi, N. & Choudhary, M. & Jat, M.L. & Abdalla, 2022. "Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus," Energy, Elsevier, vol. 254(PB).
    16. Daniel El Chami & André Daccache & Maroun El Moujabber, 2020. "How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    17. Bai, Yu & Gao, Jinhua, 2021. "Optimization of the nitrogen fertilizer schedule of maize under drip irrigation in Jilin, China, based on DSSAT and GA," Agricultural Water Management, Elsevier, vol. 244(C).
    18. Timothy E. Crews & Brian E. Rumsey, 2017. "What Agriculture Can Learn from Native Ecosystems in Building Soil Organic Matter: A Review," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    19. Liangang Xiao & Minglei Ding & Chong Wei & Ruiming Zhu & Rongqin Zhao, 2020. "The Impacts of Conservation Agriculture on Water Use and Crop Production on the Loess Plateau: From Know-What to Know-Why," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    20. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.

    More about this item

    Keywords

    Agribusiness; Agricultural and Food Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijaeri:333826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://ijaer.in/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.