IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i5p1745-d329691.html
   My bibliography  Save this article

Vertical Distribution and Controlling Factors Exploration of Sc, V, Co, Ni, Mo and Ba in Six Soil Profiles of The Mun River Basin, Northeast Thailand

Author

Listed:
  • Wenxiang Zhou

    (Institute of Earth Sciences, China University of Geosciences, Beijing 10083, China)

  • Guilin Han

    (Institute of Earth Sciences, China University of Geosciences, Beijing 10083, China)

  • Man Liu

    (Institute of Earth Sciences, China University of Geosciences, Beijing 10083, China)

  • Chao Song

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China)

  • Xiaoqiang Li

    (Institute of Earth Sciences, China University of Geosciences, Beijing 10083, China)

  • Fairda Malem

    (Environmental Research and Training Center, Department of Environmental Quality Promotion, Klong 5, Klong Luang, Pathumthani 12120, China)

Abstract

Exploring the enrichment and controlling factors of heavy metals in soils is essential because heavy metals can cause severe soil contamination and threaten human health when they are excessively enriched in soils. Soil samples (total 103) from six soil profiles (T1 to T6) in the Mun River Basin, Northeast Thailand, were collected for the analyses of the content of heavy metals, including Sc, V, Co, Ni, Mo, Ba. The average contents of soil heavy metals decrease in the following order: Ba, V, Ni, Sc, Co, and Mo (T1, T3, T4 and T5); Ni, V, Ba, Co, Sc, Mo, and Ba (T2); Ba, V, Sc, Ni, Mo, and Co (T6). An enrichment factor (EF) and geoaccumulation index were calculated to assess the degree of heavy metal contamination in the soils. The EFs of these heavy metals in most samples range from 0 to 1.5, which reveals that most heavy metals are slightly enriched. Geoaccumulation indexes show that only the topsoil of T1 and T2 is slightly contaminated by Ba, Sc, Ni, and V. Soil organic carbon (SOC), soil pH and soil texture are significantly positively correlated with most heavy metals, except for a negative correlation between soil pH and Mo content. In conclusion, the influence of heavy metals on soils in the study area is slight and SOC, soil pH, soil texture dominate the behavior of heavy metals.

Suggested Citation

  • Wenxiang Zhou & Guilin Han & Man Liu & Chao Song & Xiaoqiang Li & Fairda Malem, 2020. "Vertical Distribution and Controlling Factors Exploration of Sc, V, Co, Ni, Mo and Ba in Six Soil Profiles of The Mun River Basin, Northeast Thailand," IJERPH, MDPI, vol. 17(5), pages 1-14, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1745-:d:329691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/5/1745/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/5/1745/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Qu & Guilin Han & Man Liu & Xiaoqiang Li, 2019. "The Mercury Behavior and Contamination in Soil Profiles in Mun River Basin, Northeast Thailand," IJERPH, MDPI, vol. 16(21), pages 1-16, October.
    2. Man Liu & Guilin Han & Qian Zhang & Zhaoliang Song, 2019. "Variations and Indications of δ 13 C SOC and δ 15 N SON in Soil Profiles in Karst Critical Zone Observatory (CZO), Southwest China," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    3. Jie Zeng & Guilin Han & Qixin Wu & Yang Tang, 2019. "Heavy Metals in Suspended Particulate Matter of the Zhujiang River, Southwest China: Contents, Sources, and Health Risks," IJERPH, MDPI, vol. 16(10), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Zhang & Guilin Han & Man Liu & Lingqing Wang, 2019. "Geochemical Characteristics of Rare Earth Elements in Soils from Puding Karst Critical Zone Observatory, Southwest China," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
    2. Man Liu & Guilin Han & Xiaoqiang Li & Shitong Zhang & Wenxiang Zhou & Qian Zhang, 2020. "Effects of Soil Properties on K Factor in the Granite and Limestone Regions of China," IJERPH, MDPI, vol. 17(3), pages 1-13, January.
    3. Juan Cruz Colazo & Juan de Dios Herrero & Ricardo Sager & Maria Laura Guzmán & Mohammad Zaman, 2022. "Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina," Land, MDPI, vol. 11(11), pages 1-11, November.
    4. Yanzhuo Liu & Shanshan Song & Chunjuan Bi & Junli Zhao & Di Xi & Ziqi Su, 2019. "Occurrence, Distribution and Risk Assessment of Mercury in Multimedia of Soil-Dust-Plants in Shanghai, China," IJERPH, MDPI, vol. 16(17), pages 1-19, August.
    5. Jie Zeng & Guilin Han & Shitong Zhang & Qian Zhang, 2022. "Suspended Sediments Quality Assessment in a Coastal River: Identification of Potentially Toxic Elements," IJERPH, MDPI, vol. 19(7), pages 1-14, April.
    6. Rui Qu & Guilin Han & Man Liu & Kunhua Yang & Xiaoqiang Li & Jinke Liu, 2020. "Fe, Rather Than Soil Organic Matter, as a Controlling Factor of Hg Distribution in Subsurface Forest Soil in an Iron Mining Area," IJERPH, MDPI, vol. 17(1), pages 1-13, January.
    7. Qian Zhang & Guilin Han & Man Liu & Xiaoqiang Li & Lingqing Wang & Bin Liang, 2019. "Distribution and Contamination Assessment of Soil Heavy Metals in the Jiulongjiang River Catchment, Southeast China," IJERPH, MDPI, vol. 16(23), pages 1-13, November.
    8. Xiangyu Zhao & Kuang Cheng & Wang Zhou & Yi Cao & Shuang-Hua Yang, 2022. "Multivariate Statistical Analysis for the Detection of Air Pollution Episodes in Chemical Industry Parks," IJERPH, MDPI, vol. 19(12), pages 1-21, June.
    9. Qianru Man & Lijuan Xu & Mingfang Li, 2022. "Source Identification and Health Risk Assessment of Heavy Metals in Soil: A Case Study of Lintancang Plain, Northeast China," IJERPH, MDPI, vol. 19(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1745-:d:329691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.