IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v166y2018icp10-25.html
   My bibliography  Save this article

A quantitative assessment of Beneficial Management Practices to reduce carbon and reactive nitrogen footprints and phosphorus losses on dairy farms in the US Great Lakes region

Author

Listed:
  • Veltman, Karin
  • Rotz, C. Alan
  • Chase, Larry
  • Cooper, Joyce
  • Ingraham, Pete
  • Izaurralde, R. César
  • Jones, Curtis D.
  • Gaillard, Richard
  • Larson, Rebecca A.
  • Ruark, Matt
  • Salas, William
  • Thoma, Greg
  • Jolliet, Olivier

Abstract

Assessing and improving the sustainability of dairy production is essential to secure future food production. Implementation of Beneficial Management Practices (BMP) can mitigate GHG emissions and nutrient losses and reduce the environmental impact of dairy production, but comprehensive, whole-farm studies that evaluate the efficacy of multiple BMPs to reduce multiple environmental impacts and that include an assessment of productivity and farm profitability, are scarce. We used a process-based model (IFSM) to assess the efficacy of (10+) individual BMPs to reduce the carbon (C) footprint expressed per unit of milk produced of two model dairy farms, a 1500 cow farm and a 150 cow farm, with farming practices representative for the Great Lakes region. In addition to the C footprint, we assessed the effect of BMP implementation on the reactive nitrogen (N) footprint and total phosphorus (P) losses (per unit of milk produced), as well as milk production and farm profitability. We evaluated individual farm-component specific BMPs, that is, 5 dietary manipulations, 3 (150 cow farm) or 4 (1500 cow farm) manure interventions, and 6 field interventions, as well as an integrated whole-farm mitigation strategy based on the best performing individual BMPs. Our results show that reductions in the C footprint expressed per unit of milk are greatest with individual manure management interventions (4–20% reduction) followed by dietary manipulations (0–12% reduction) for both farm types. Field management BMPs had a modest effect on reducing this footprint (0–3% reduction), but showed substantial potential to reduce the reactive N footprint (0–19% reduction) and P losses (1–47% reduction). We found that the whole-farm mitigation strategy can substantially reduce the C footprint, reactive N footprint and total P loss of both farms with predicted reductions of approximately 41%, 41% and 46% respectively, while increasing milk production and the net return per cow by approximately 11% and 27%. To contextualize IFSM predictions for the whole-farm mitigation, we compared components of IFSM predictions to those of three other process-based models (CNCPS, Manure-DNDC and EPIC). While we did observe differences in model predictions for individual flows (particularly P erosion and P leaching losses), with exception of the total P loss, the models generally predicted similar overall mitigation potentials. Overall, our analysis shows that an integrated set of BMPs can be implemented to reduce GHG emissions and nutrient losses of dairy farms in the Great Lakes region without sacrificing productivity or profit to the farmer.

Suggested Citation

  • Veltman, Karin & Rotz, C. Alan & Chase, Larry & Cooper, Joyce & Ingraham, Pete & Izaurralde, R. César & Jones, Curtis D. & Gaillard, Richard & Larson, Rebecca A. & Ruark, Matt & Salas, William & Thoma, 2018. "A quantitative assessment of Beneficial Management Practices to reduce carbon and reactive nitrogen footprints and phosphorus losses on dairy farms in the US Great Lakes region," Agricultural Systems, Elsevier, vol. 166(C), pages 10-25.
  • Handle: RePEc:eee:agisys:v:166:y:2018:i:c:p:10-25
    DOI: 10.1016/j.agsy.2018.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17308156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David S. Powlson & Clare M. Stirling & M. L. Jat & Bruno G. Gerard & Cheryl A. Palm & Pedro A. Sanchez & Kenneth G. Cassman, 2014. "Limited potential of no-till agriculture for climate change mitigation," Nature Climate Change, Nature, vol. 4(8), pages 678-683, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Daesoo & Stoddart, Nick & Rotz, C. Alan & Veltman, Karin & Chase, Larry & Cooper, Joyce & Ingraham, Pete & Izaurralde, R. César & Jones, Curtis D. & Gaillard, Richard & Aguirre-Villegas, Horacio , 2019. "Analysis of beneficial management practices to mitigate environmental impacts in dairy production systems around the Great Lakes," Agricultural Systems, Elsevier, vol. 176(C).
    2. Rotz, C. Alan & Holly, Michael & de Long, Aaron & Egan, Franklin & Kleinman, Peter J.A., 2020. "An environmental assessment of grass-based dairy production in the northeastern United States," Agricultural Systems, Elsevier, vol. 184(C).
    3. Castaño-Sánchez, José P. & Karsten, Heather D. & Rotz, C. Alan, 2022. "Double cropping and manure management mitigate the environmental impact of a dairy farm under present and future climate," Agricultural Systems, Elsevier, vol. 196(C).
    4. Larry E. Chase & Riccardo Fortina, 2023. "Environmental and Economic Responses to Precision Feed Management in Dairy Cattle Diets," Agriculture, MDPI, vol. 13(5), pages 1-23, May.
    5. Horacio Andres Aguirre-Villegas & Erin Cortus & Douglas J. Reinemann, 2022. "The Role of Anaerobic Digestion and Solar PV to Achieve GHG Neutrality in a Farm Setting," Energies, MDPI, vol. 15(6), pages 1-15, March.
    6. Veltman, Karin & Rotz, C. Alan & Chase, Larry & Cooper, Joyce & Forest, Chris E. & Ingraham, Peter A. & Izaurralde, R. César & Jones, Curtis D. & Nicholas, Robert E. & Ruark, Matthew D. & Salas, Willi, 2021. "Assessing and reducing the environmental impact of dairy production systems in the northern US in a changing climate," Agricultural Systems, Elsevier, vol. 192(C).
    7. Susanne Wiesner & Alison J. Duff & Ankur R. Desai & Kevin Panke-Buisse, 2020. "Increasing Dairy Sustainability with Integrated Crop–Livestock Farming," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    8. Marcello Ermido Chiodini & Michele Costantini & Michele Zoli & Jacopo Bacenetti & Daniele Aspesi & Lorenzo Poggianella & Marco Acutis, 2023. "Real-Scale Study on Methane and Carbon Dioxide Emission Reduction from Dairy Liquid Manure with the Commercial Additive SOP LAGOON," Sustainability, MDPI, vol. 15(3), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. OKORIE, Benedict Odinaka & NIRAJ, Yadav, 2022. "Effects Of Different Tillage Practices On Soil Fertility Properties: A Review," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(1), February.
    2. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    3. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Jeetendra Prakash Aryal & Dil Bahadur Rahut & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri, 2020. "Climate change mitigation options among farmers in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3267-3289, April.
    5. Juan Cruz Colazo & Juan de Dios Herrero & Ricardo Sager & Maria Laura Guzmán & Mohammad Zaman, 2022. "Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina," Land, MDPI, vol. 11(11), pages 1-11, November.
    6. Tang, Kai, 2024. "Agricultural adaptation to the environmental and social consequences of climate change in mixed farming systems: Evidence from North Xinjiang, China," Agricultural Systems, Elsevier, vol. 217(C).
    7. Chen, Le & Rejesus, Roderick M. & Aglasan, Serkan & Hagen, Stephen & Salas, William, 2022. "The Impact of No-Till Production on Agricultural Land Values in the US Midwest," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322445, Agricultural and Applied Economics Association.
    8. Jin Zhang & Lan-Fang Wu, 2021. "Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System," Agriculture, MDPI, vol. 11(3), pages 1-13, March.
    9. Francesco Calzarano & Fabio Stagnari & Sara D’Egidio & Giancarlo Pagnani & Angelica Galieni & Stefano Di Marco & Elisa Giorgia Metruccio & Michele Pisante, 2018. "Durum Wheat Quality, Yield and Sanitary Status under Conservation Agriculture," Agriculture, MDPI, vol. 8(9), pages 1-13, September.
    10. Wang, Yicheng & Tao, Fulu & Chen, Yi & Yin, Lichang, 2024. "Climate mitigation potential and economic costs of natural climate solutions for main cropping systems across China," Agricultural Systems, Elsevier, vol. 218(C).
    11. Parihar, C.M. & Meena, B.R. & Nayak, Hari Sankar & Patra, K. & Sena, D.R. & Singh, Raj & Jat, S.L. & Sharma, D.K. & Mahala, D.M. & Patra, S. & Rupesh, & Rathi, N. & Choudhary, M. & Jat, M.L. & Abdalla, 2022. "Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus," Energy, Elsevier, vol. 254(PB).
    12. Daniel El Chami & André Daccache & Maroun El Moujabber, 2020. "How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    13. Timothy E. Crews & Brian E. Rumsey, 2017. "What Agriculture Can Learn from Native Ecosystems in Building Soil Organic Matter: A Review," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    14. Liangang Xiao & Minglei Ding & Chong Wei & Ruiming Zhu & Rongqin Zhao, 2020. "The Impacts of Conservation Agriculture on Water Use and Crop Production on the Loess Plateau: From Know-What to Know-Why," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    15. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    16. Sihvonen, Matti & Pihlainen, Sampo & Lai, Tin-Yu & Salo, Tapio & Hyytiäinen, Kari, 2021. "Crop production, water pollution, or climate change mitigation—Which drives socially optimal fertilization management most?," Agricultural Systems, Elsevier, vol. 186(C).
    17. Zandersen, Marianne & Jørgensen, Sisse Liv & Nainggolan, Doan & Gyldenkærne, Steen & Winding, Anne & Greve, Mogens Humlekrog & Termansen, Mette, 2016. "Potential and economic efficiency of using reduced tillage to mitigate climate effects in Danish agriculture," Ecological Economics, Elsevier, vol. 123(C), pages 14-22.
    18. Iñigo Virto & María José Imaz & Oihane Fernández-Ugalde & Nahia Gartzia-Bengoetxea & Alberto Enrique & Paloma Bescansa, 2014. "Soil Degradation and Soil Quality in Western Europe: Current Situation and Future Perspectives," Sustainability, MDPI, vol. 7(1), pages 1-53, December.
    19. Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    20. Aslam, Uzma & Termansen, Mette & Fleskens, Luuk, 2017. "Investigating farmers’ preferences for alternative PES schemes for carbon sequestration in UK agroecosystems," Ecosystem Services, Elsevier, vol. 27(PA), pages 103-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:166:y:2018:i:c:p:10-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.