IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1621-d921686.html
   My bibliography  Save this article

Distribution of Irrigated and Rainfed Agricultural Land in a Semi-Arid Sandy Area

Author

Listed:
  • Huihui Zheng

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Zhiting Sang

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Kaige Wang

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Yan Xu

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China
    Key Laboratory of Agricultural Land Quality and Monitoring of Nature Resource, Beijing 100193, China
    Land Use and Management Center, China Agricultural University, Beijing 100193, China)

  • Zhaoyang Cai

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

Abstract

Under water resource and terrain constraints, a certain scale threshold of irrigated and rainfed agricultural areas exists in semi-arid sandy areas. If this threshold is exceeded, water and soil resources will be unbalanced, and the ecological environment will deteriorate. Accurate assessment of the suitable scale of cultivated land in semi-arid sandy areas is of great significance for sustainable utilization of cultivated land resources and regional ecological security. Most existing research methods are based on water resource constraints and rarely consider terrain factors. Therefore, based on the principle of water balance and with the Horqin Left Wing Rear Banner as the research area, this study adopted a multi-objective fuzzy optimization model and relative terrain index analysis method to explore the appropriate spatial ratio of irrigation and rainfed agriculture. The results show that the area of irrigated agriculture in the study area is 77,700 hm 2 , and the appropriate scale is 91,700 hm 2 . The current area of dry farming is 184,600 hm 2 , and the suitable scale is 117,100 hm 2 . The results also show that the utilization efficiency of water and soil resources in irrigated agriculture was not optimal, rainfed agriculture exceeded its suitable scale, and water and soil resources were seriously unbalanced. However, the region of cultivated land that exceeds the appropriate scale is mostly located in an area with poor terrain, less precipitation, and other unsuitable conditions for cultivation, which is prone to abandonment, resulting in deterioration of the ecological environment. Therefore, the spatial layout of agricultural land use in the study area should be adapted to local conditions, and the water-saving structure of irrigated agriculture should be optimized to achieve the maximum comprehensive benefits. Dry farming should be controlled on a reasonable scale, and the part exceeding the appropriate scale should be returned to grassland to ensure sustainable development.

Suggested Citation

  • Huihui Zheng & Zhiting Sang & Kaige Wang & Yan Xu & Zhaoyang Cai, 2022. "Distribution of Irrigated and Rainfed Agricultural Land in a Semi-Arid Sandy Area," Land, MDPI, vol. 11(10), pages 1-13, September.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1621-:d:921686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    2. Holst, Jirko & Liu, Wenping & Zhang, Qian & Doluschitz, Reiner, 2014. "Crop evapotranspiration, arable cropping systems and water sustainability in southern Hebei, P.R. China," Agricultural Water Management, Elsevier, vol. 141(C), pages 47-54.
    3. Mandryk, Maryia & Reidsma, Pytrik & van Ittersum, Martin K., 2017. "Crop and farm level adaptation under future climate challenges: An exploratory study considering multiple objectives for Flevoland, the Netherlands," Agricultural Systems, Elsevier, vol. 152(C), pages 154-164.
    4. Pilehforooshha, Parastoo & Karimi, Mohammad & Taleai, Mohammad, 2014. "A GIS-based agricultural land-use allocation model coupling increase and decrease in land demand," Agricultural Systems, Elsevier, vol. 130(C), pages 116-125.
    5. Mardani Najafabadi, Mostafa & Ziaee, Saman & Nikouei, Alireza & Ahmadpour Borazjani, Mahmoud, 2019. "Mathematical programming model (MMP) for optimization of regional cropping patterns decisions: A case study," Agricultural Systems, Elsevier, vol. 173(C), pages 218-232.
    6. Biswas, Animesh & Pal, Bijay Baran, 2005. "Application of fuzzy goal programming technique to land use planning in agricultural system," Omega, Elsevier, vol. 33(5), pages 391-398, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karner, Katrin & Schmid, Erwin & Schneider, Uwe A. & Mitter, Hermine, 2021. "Computing stochastic Pareto frontiers between economic and environmental goals for a semi-arid agricultural production region in Austria," Ecological Economics, Elsevier, vol. 185(C).
    2. Mardani Najafabadi, Mostafa & Magazzino, Cosimo & Valente, Donatella & Mirzaei, Abbas & Petrosillo, Irene, 2023. "A new interval meta-goal programming for sustainable planning of agricultural water-land use nexus," Ecological Modelling, Elsevier, vol. 484(C).
    3. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    4. Lodree Jr., Emmett J. & Uzochukwu, Benedict M., 2008. "Production planning for a deteriorating item with stochastic demand and consumer choice," International Journal of Production Economics, Elsevier, vol. 116(2), pages 219-232, December.
    5. Peng Zhang & Zihan Xu & Weiguo Fan & Jiahui Ren & Ranran Liu & Xiaobin Dong, 2019. "Structure Dynamics and Risk Assessment of Water-Energy-Food Nexus: A Water Footprint Approach," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    6. Lowe, Benjamin H. & Oglethorpe, David R. & Choudhary, Sonal, 2020. "Comparing the economic value of virtual water with volumetric and stress-weighted approaches: A case for the tea supply chain," Ecological Economics, Elsevier, vol. 172(C).
    7. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    8. Yong Liu & Yajuan Yu & Huaicheng Guo & Pingjian Yang, 2009. "Optimal Land-Use Management for Surface Source Water Protection Under Uncertainty: A Case Study of Songhuaba Watershed (Southwestern China)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2069-2083, August.
    9. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    10. Yuxiang Ma & Min Zhou & Chaonan Ma & Mengcheng Wang & Jiating Tu, 2021. "Hybrid Economic-Environment-Ecology Land Planning Model under Uncertainty—A Case Study in Mekong Delta," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    11. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Mubako, Stanley & Lahiri, Sajal & Lant, Christopher, 2013. "Input–output analysis of virtual water transfers: Case study of California and Illinois," Ecological Economics, Elsevier, vol. 93(C), pages 230-238.
    13. Ana Esteso & M. M. E. Alemany & Angel Ortiz & Shaofeng Liu, 2022. "Optimization model to support sustainable crop planning for reducing unfairness among farmers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 1101-1127, September.
    14. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    15. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    16. Liu, J. & Li, Y.P. & Huang, G.H. & Zeng, X.T., 2014. "A dual-interval fixed-mix stochastic programming method for water resources management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 50-66.
    17. An Thinh Nguyen & Van Hanh Ta & Van Hong Nguyen & Anh Tuan Pham & Mélie Monnerat & Luc Hens, 2022. "Shifting challenges for Cinnamomum cassia production in the mountains of Northern Vietnam: spatial analysis combined with semi-structured interviews," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 7213-7235, May.
    18. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    19. Nikouei, Alireza & Asgharipour, Mohammad Reza & Marzban, Zahra, 2022. "Modeling land allocation to produce crops under economic and environmental goals in Iran: a multi-objective programming approach," Ecological Modelling, Elsevier, vol. 471(C).
    20. Yu Zhang & Jin-he Zhang & Qing Tian, 2021. "Virtual Water Trade in the Service Sector: China’s Inbound Tourism as a Case Study," IJERPH, MDPI, vol. 18(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1621-:d:921686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.