IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i10p2069-2083.html
   My bibliography  Save this article

Optimal Land-Use Management for Surface Source Water Protection Under Uncertainty: A Case Study of Songhuaba Watershed (Southwestern China)

Author

Listed:
  • Yong Liu
  • Yajuan Yu
  • Huaicheng Guo
  • Pingjian Yang

Abstract

The water supply to Chinese cities is increasingly degrading from pollution due to watershed activities. Consequently, water source protection requires urgent action using optimal land-use management efforts. An inexact linear programming model for optimal land-use management of surface water source area was developed. The model was proposed to balance the economic benefits of land-use development and water source protection. The maximum net economic benefit (NEB) was chosen as the objective of land-use management. The total environmental capacity (TEC) of rivers and the minimum water supply (MWS) were considered key constraints. Other constraints included forest coverage, government requirements concerning the proportions of various land-use types, soil loss, slope lands, and technical constraints. A case study was conducted for the Songhuaba Watershed, a reservoir supplying water to Kunming City, the third largest city in southwestern China. A 15-year (2006 to 2020) optimal model for land-use management was developed to better protect this water source and to gain maximum benefits from development. Ten constraints were involved in the optimal model, and results indicated that NEB ranged between 893 and 1,459 million US$. The proposed model will allow local authorities to better understand and address complex land-use systems and to develop optimal land-use management strategies for balancing source water protection and local economic development. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Yong Liu & Yajuan Yu & Huaicheng Guo & Pingjian Yang, 2009. "Optimal Land-Use Management for Surface Source Water Protection Under Uncertainty: A Case Study of Songhuaba Watershed (Southwestern China)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2069-2083, August.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:10:p:2069-2083
    DOI: 10.1007/s11269-008-9370-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9370-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9370-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eduardo L. Giménez & Manuel González‐Gómez, 2003. "Optimal Allocation of Land between Productive Use and Recreational Use," Journal of Regional Science, Wiley Blackwell, vol. 43(2), pages 269-294, May.
    2. Vincenzina Messina & Valentina Bosetti, 2003. "Uncertainty and Option Value in Land Allocation Problems," Annals of Operations Research, Springer, vol. 124(1), pages 165-181, November.
    3. Biswas, Animesh & Pal, Bijay Baran, 2005. "Application of fuzzy goal programming technique to land use planning in agricultural system," Omega, Elsevier, vol. 33(5), pages 391-398, October.
    4. Lijing Wang & Wei Meng & Huaicheng Guo & Zhenxing Zhang & Yong Liu & Yingying Fan, 2006. "An Interval Fuzzy Multiobjective Watershed Management Model for the Lake Qionghai Watershed, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 701-721, October.
    5. Amitrajeet A. Batabyal, 2000. "An optimal stopping approach to land development under uncertainty," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 34(1), pages 147-156.
    6. Ells, A. & Bulte, E.H. & van Kooten, G.C., 1997. "Uncertainty and forest land use in British Columbia : Vague preferences and imprecise coefficients," Other publications TiSEM 7ec50f74-1a54-4827-9a2e-9, Tilburg University, School of Economics and Management.
    7. Sharawi, Huda Abdelwahab, 2006. "Optimal land-use allocation in central Sudan," Forest Policy and Economics, Elsevier, vol. 8(1), pages 10-21, January.
    8. Huang, G. H., 1998. "A hybrid inexact-stochastic water management model," European Journal of Operational Research, Elsevier, vol. 107(1), pages 137-158, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    2. Peng Shi & Miao Wu & Simin Qu & Peng Jiang & Xueyuan Qiao & Xi Chen & Mi Zhou & Zhicai Zhang, 2015. "Spatial Distribution and Temporal Trends in Precipitation Concentration Indices for the Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3941-3955, September.
    3. Ashenafi Mehari & Paolo Vincenzo Genovese, 2023. "A Land Use Planning Literature Review: Literature Path, Planning Contexts, Optimization Methods, and Bibliometric Methods," Land, MDPI, vol. 12(11), pages 1-41, October.
    4. QingHai Guo & KeMing Ma & Liu Yang & Kate He, 2010. "Testing a Dynamic Complex Hypothesis in the Analysis of Land Use Impact on Lake Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1313-1332, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingkui Qiu & Shasha Lu & Min Zhou & Lu Zhang & Yu Deng & Ci Song & Zuo Zhang, 2015. "A Hybrid Inexact Optimization Method for Land-Use Allocation in Association with Environmental/Ecological Requirements at a Watershed Level," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    2. Min Zhou & Shukui Tan & Lizao Tao & Xiangbo Zhu & Ghulam Akhmat, 2015. "An interval fuzzy land-use allocation model (IFLAM) for Beijing in association with environmental and ecological consideration under uncertainty," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(6), pages 2269-2290, November.
    3. H. Lu & G. Huang & G. Zeng & I. Maqsood & L. He, 2008. "An Inexact Two-stage Fuzzy-stochastic Programming Model for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 991-1016, August.
    4. H. Zhu & G. Huang & P. Guo & X. Qin, 2009. "A Fuzzy Robust Nonlinear Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2913-2940, November.
    5. Nana, Tian & Lu, Fadian, 2013. "Adaptive management decision of agroforestry under timber price risk," Journal of Forest Economics, Elsevier, vol. 19(2), pages 162-173.
    6. X. Qin & G. Huang, 2009. "An Inexact Chance-constrained Quadratic Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 661-695, March.
    7. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    8. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    9. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    10. Lodree Jr., Emmett J. & Uzochukwu, Benedict M., 2008. "Production planning for a deteriorating item with stochastic demand and consumer choice," International Journal of Production Economics, Elsevier, vol. 116(2), pages 219-232, December.
    11. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    13. T. Reshma & K. Reddy & Deva Pratap & Mehdi Ahmedi & V. Agilan, 2015. "Optimization of Calibration Parameters for an Event Based Watershed Model Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4589-4606, October.
    14. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    15. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    16. Patrick Heidkamp & Dean Hanink & Robert Cromley, 2008. "A land use model of the effects of eco-labeling in coffee markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(3), pages 725-746, September.
    17. Wang, S. & Huang, G.H., 2015. "A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions: An application to water resources management," European Journal of Operational Research, Elsevier, vol. 240(2), pages 572-581.
    18. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    19. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    20. Tsvetan G. Tsvetanov & Farhed A. Shah, 2012. "The Economics of Protection against Sea-Level Rise: An Application to Coastal Properties in Connecticut," Working Papers 10, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:10:p:2069-2083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.