IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v93y2013icp230-238.html
   My bibliography  Save this article

Input–output analysis of virtual water transfers: Case study of California and Illinois

Author

Listed:
  • Mubako, Stanley
  • Lahiri, Sajal
  • Lant, Christopher

Abstract

Increasing pressures on water resources in the two economically important states of California (CA) and Illinois (IL) have created a need for critical information related to sustainable water use and management. This paper applies input–output (IO) analysis to evaluate water use and quantify virtual water transfers involving the two states. Results show that aquaculture requires the largest input of direct water per unit of economic output, followed by crops, power generation, livestock, mining, services, domestic, and industry. Low water use intensity industry and services sectors contributed the largest proportions of value added and employee compensation. In 2008, the two states were net virtual exporters, with CA exporting 1.3 times the net export volume of IL. More than 72% of virtual water exports for each state originated from the high total water use intensity but low value added crops sector, with irrigation and rainfall contributing 99% and 97% of the crop-related exports for CA and IL, respectively. Virtual water export volumes were 59% for CA and 71% for IL when compared to actual water use. These results highlight the need to consider water use efficiency and opportunity cost when managing water under scarcity conditions.

Suggested Citation

  • Mubako, Stanley & Lahiri, Sajal & Lant, Christopher, 2013. "Input–output analysis of virtual water transfers: Case study of California and Illinois," Ecological Economics, Elsevier, vol. 93(C), pages 230-238.
  • Handle: RePEc:eee:ecolec:v:93:y:2013:i:c:p:230-238
    DOI: 10.1016/j.ecolecon.2013.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800913002012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2013.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sporri, C. & Borsuk, M. & Peters, I. & Reichert, P., 2007. "The economic impacts of river rehabilitation: A regional Input-Output analysis," Ecological Economics, Elsevier, vol. 62(2), pages 341-351, April.
    2. Guan, Dabo & Hubacek, Klaus, 2007. "Assessment of regional trade and virtual water flows in China," Ecological Economics, Elsevier, vol. 61(1), pages 159-170, February.
    3. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    4. Zhang, Zhuoying & Yang, Hong & Shi, Minjun, 2011. "Analyses of water footprint of Beijing in an interregional input–output framework," Ecological Economics, Elsevier, vol. 70(12), pages 2494-2502.
    5. Novo, P. & Garrido, A. & Varela-Ortega, C., 2009. "Are virtual water "flows" in Spanish grain trade consistent with relative water scarcity?," Ecological Economics, Elsevier, vol. 68(5), pages 1454-1464, March.
    6. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    7. Duarte, Rosa & Sanchez-Choliz, Julio & Bielsa, Jorge, 2002. "Water use in the Spanish economy: an input-output approach," Ecological Economics, Elsevier, vol. 43(1), pages 71-85, November.
    8. Ukidwe, Nandan U. & Bakshi, Bhavik R., 2007. "Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model," Energy, Elsevier, vol. 32(9), pages 1560-1592.
    9. Kumiko Kondo, 2005. "Economic analysis of water resources in Japan: using factor decomposition analysis based on input-output tables," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(2), pages 109-129, June.
    10. Ferng, Jiun-Jiun, 2001. "Using composition of land multiplier to estimate ecological footprints associated with production activity," Ecological Economics, Elsevier, vol. 37(2), pages 159-172, May.
    11. Hubacek, Klaus & Giljum, Stefan, 2003. "Applying physical input-output analysis to estimate land appropriation (ecological footprints) of international trade activities," Ecological Economics, Elsevier, vol. 44(1), pages 137-151, February.
    12. Jesper Munksgaard & Mette Wier & Manfred Lenzen & Christopher Dey, 2005. "Using Input‐Output Analysis to Measure the Environmental Pressure of Consumption at Different Spatial Levels," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 169-185, January.
    13. Erik Dietzenbacher & Esther Velazquez, 2007. "Analysing Andalusian Virtual Water Trade in an Input-Output Framework," Regional Studies, Taylor & Francis Journals, vol. 41(2), pages 185-196.
    14. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    15. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    3. Tasnuva Mahjabin & Susana Garcia & Caitlin Grady & Alfonso Mejia, 2018. "Large cities get more for less: Water footprint efficiency across the US," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-17, August.
    4. Alexandros Gkatsikos & Konstadinos Mattas, 2021. "The Paradox of the Virtual Water Trade Balance in the Mediterranean Region," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    5. Feng, Cuiyang & Tang, Xu & Jin, Yi & Guo, Yuhua & Zhang, Xiaochuan, 2019. "Regional energy-water nexus based on structural path betweenness: A case study of Shanxi Province, China," Energy Policy, Elsevier, vol. 127(C), pages 102-112.
    6. Willa Paterson & Richard Rushforth & Benjamin L. Ruddell & Megan Konar & Ikechukwu C. Ahams & Jorge Gironás & Ana Mijic & Alfonso Mejia, 2015. "Water Footprint of Cities: A Review and Suggestions for Future Research," Sustainability, MDPI, vol. 7(7), pages 1-30, June.
    7. Alexandros Gkatsikos & Konstadinos Mattas & Efstratios Loizou & Dimitrios Psaltopoulos, 2022. "The Neglected Water Rebound Effect of Income and Employment Growth," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 379-398, January.
    8. Jordan Hristov & Aleksandra Martinovska-Stojcheska & Yves Surry, 2016. "The Economic Role of Water in FYR Macedonia: An Input–Output Analysis and Implications for the Western Balkan Countries," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-37, December.
    9. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Chinhao Chong & Xi Zhang & Geng Kong & Linwei Ma & Zheng Li & Weidou Ni & Eugene-Hao-Chen Yu, 2021. "A Visualization Method of the Economic Input–Output Table: Mapping Monetary Flows in the Form of Sankey Diagrams," Sustainability, MDPI, vol. 13(21), pages 1-56, November.
    11. White, David J. & Feng, Kuishuang & Sun, Laixiang & Hubacek, Klaus, 2015. "A hydro-economic MRIO analysis of the Haihe River Basin's water footprint and water stress," Ecological Modelling, Elsevier, vol. 318(C), pages 157-167.
    12. Zhu, Xiaojie & Guo, Ruipeng & Chen, Bin & Zhang, Jing & Hayat, Tasawar & Alsaedi, Ahmed, 2015. "Embodiment of virtual water of power generation in the electric power system in China," Applied Energy, Elsevier, vol. 151(C), pages 345-354.
    13. Rehkamp, Sarah & Canning, Patrick, 2018. "Measuring Embodied Blue Water in American Diets: An EIO Supply Chain Approach," Ecological Economics, Elsevier, vol. 147(C), pages 179-188.
    14. Rehkamp, Sarah & Canning, Patrick & Birney, Catherine, 2021. "Tracking the U.S. Domestic Food Supply Chain’s Freshwater Use Over Time," Economic Research Report 327191, United States Department of Agriculture, Economic Research Service.
    15. Bae, Jinwon & Dall'erba, Sandy, 2018. "Crop Production, Export of Virtual Water and Water-saving Strategies in Arizona," Ecological Economics, Elsevier, vol. 146(C), pages 148-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, X. & Chen, B. & Yang, Z.F., 2009. "National water footprint in an input–output framework—A case study of China 2002," Ecological Modelling, Elsevier, vol. 220(2), pages 245-253.
    2. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    3. Lenzen, Manfred & Bhaduri, Anik & Moran, Daniel & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2012. "The role of scarcity in global virtual water flows," Discussion Papers 133478, University of Bonn, Center for Development Research (ZEF).
    4. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    5. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    6. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    7. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    8. Xueting Zhao, 2014. "China's Inter-regional Trade of Virtual Water: a Multi-regional Input-output Modeling," Working Papers Working Paper 2014-04, Regional Research Institute, West Virginia University.
    9. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    10. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    11. Kissinger, Meidad & Rees, William E., 2010. "An interregional ecological approach for modelling sustainability in a globalizing world—Reviewing existing approaches and emerging directions," Ecological Modelling, Elsevier, vol. 221(21), pages 2615-2623.
    12. Jean-Marc Douguet & Martin O 'Connor & Jean-Pierre Doussoulin & Philippe Lanceleur & Karine Philippot, 2014. "L'Empreinte Écologique Du Parc Naturel De La Haute Vallée De Chevreuse : Du Concept À La Construction De L'Outil," Working Papers hal-01243385, HAL.
    13. Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
    14. Liu, Qiaoling & Wang, Qi, 2015. "Reexamine SO2 emissions embodied in China's exports using multiregional input–output analysis," Ecological Economics, Elsevier, vol. 113(C), pages 39-50.
    15. Jin, Wei & Xu, Linyu & Yang, Zhifeng, 2009. "Modeling a policy making framework for urban sustainability: Incorporating system dynamics into the Ecological Footprint," Ecological Economics, Elsevier, vol. 68(12), pages 2938-2949, October.
    16. Li, You & Hewitt, C.N., 2008. "The effect of trade between China and the UK on national and global carbon dioxide emissions," Energy Policy, Elsevier, vol. 36(6), pages 1907-1914, June.
    17. Makiko Tsukui & Shigemi Kagawa & Yasushi Kondo, 2015. "Measuring the waste footprint of cities in Japan: an interregional waste input–output analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-24, December.
    18. Bae, Jinwon & Dall'erba, Sandy, 2018. "Crop Production, Export of Virtual Water and Water-saving Strategies in Arizona," Ecological Economics, Elsevier, vol. 146(C), pages 148-156.
    19. Jordan Hristov & Aleksandra Martinovska-Stojcheska & Yves Surry, 2016. "The Economic Role of Water in FYR Macedonia: An Input–Output Analysis and Implications for the Western Balkan Countries," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-37, December.
    20. Fabien Martinez, 2015. "A Three-Dimensional Conceptual Framework of Corporate Water Responsibility," Post-Print hal-02887624, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:93:y:2013:i:c:p:230-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.