IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v471y2022ics0304380022001703.html
   My bibliography  Save this article

Modeling land allocation to produce crops under economic and environmental goals in Iran: a multi-objective programming approach

Author

Listed:
  • Nikouei, Alireza
  • Asgharipour, Mohammad Reza
  • Marzban, Zahra

Abstract

This study introduces a multi-objective programming model for identifying a cropping pattern to evaluate the feasibility of increasing net profit, reducing water use, and diminishing the environmental impacts, simultaneously, under life cycle assessment (LCA). The research uses data collected in 2016-2017 through a survey in the east of the Lorestan Province of Iran. Results indicate that the multi-objective cropping pattern reduces environmental indicators, including water consumption by 1%, global warming potential by 14%, and nonrenewable energy use by 14%, with no change in farms’ net profit compared to the current pattern in the region. The findings reveal that a designed cropping pattern under the constraints and objectives of LCA not only minimizes the environmental impacts, but also considers the stability of the benefits in the long term. However, the currently applied cropping pattern by farmers only focuses on achieving short-term profit-oriented goals. A new approach to land allocation is necessary to produce crops with a reduction in water consumption, non-renewable energy use, and greenhouse gas emissions in the region. In this regard, it is essential to consider the policies that reduce available water and non-renewable resources into government decisions. On the other hand, policy incentives or disincentives, developing support packages of crop pricing, insurance and facilities support to prevent the cultivation of crops with high water demand and fertilizer are also essential. This proposed planning model should be used as the foundation for long-term cropping pattern planning policies in other irrigated and rainfed farming systems around the world.

Suggested Citation

  • Nikouei, Alireza & Asgharipour, Mohammad Reza & Marzban, Zahra, 2022. "Modeling land allocation to produce crops under economic and environmental goals in Iran: a multi-objective programming approach," Ecological Modelling, Elsevier, vol. 471(C).
  • Handle: RePEc:eee:ecomod:v:471:y:2022:i:c:s0304380022001703
    DOI: 10.1016/j.ecolmodel.2022.110062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022001703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goossens, Y. & Annaert, B. & De Tavernier, J. & Mathijs, E. & Keulemans, W. & Geeraerd, A., 2017. "Life cycle assessment (LCA) for apple orchard production systems including low and high productive years in conventional, integrated and organic farms," Agricultural Systems, Elsevier, vol. 153(C), pages 81-93.
    2. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    3. F. Fallahpour & A. Aminghafouri & A. Ghalegolab Behbahani & M. Bannayan, 2012. "The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(6), pages 979-992, December.
    4. Suresh, K. R. & Mujumdar, P. P., 2004. "A fuzzy risk approach for performance evaluation of an irrigation reservoir system," Agricultural Water Management, Elsevier, vol. 69(3), pages 159-177, October.
    5. MacWilliam, S. & Wismer, M. & Kulshreshtha, S., 2014. "Life cycle and economic assessment of Western Canadian pulse systems: The inclusion of pulses in crop rotations," Agricultural Systems, Elsevier, vol. 123(C), pages 43-53.
    6. Patterson, Murray & McDonald, Garry & Hardy, Derrylea, 2017. "Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting," Ecological Modelling, Elsevier, vol. 362(C), pages 19-36.
    7. Kuo, Sheng-Feng & Ho, Shin-Shen & Liu, Chen-Wuing, 2006. "Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan," Agricultural Water Management, Elsevier, vol. 82(3), pages 433-451, April.
    8. Acosta-Alba, Ivonne & Chia, Eduardo & Andrieu, Nadine, 2019. "The LCA4CSA framework: Using life cycle assessment to strengthen environmental sustainability analysis of climate smart agriculture options at farm and crop system levels," Agricultural Systems, Elsevier, vol. 171(C), pages 155-170.
    9. Çetin, Bahattin & Vardar, Ali, 2008. "An economic analysis of energy requirements and input costs for tomato production in Turkey," Renewable Energy, Elsevier, vol. 33(3), pages 428-433.
    10. Dunnett, A. & Shirsath, P.B. & Aggarwal, P.K. & Thornton, P. & Joshi, P.K. & Pal, B.D. & Khatri-Chhetri, A. & Ghosh, J., 2018. "Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions," Ecological Modelling, Elsevier, vol. 381(C), pages 23-35.
    11. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    12. Gohar, Abdelaziz A. & Ward, Frank A., 2010. "Gains from expanded irrigation water trading in Egypt: An integrated basin approach," Ecological Economics, Elsevier, vol. 69(12), pages 2535-2548, October.
    13. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    14. West, Jason, 2019. "Multi-criteria evolutionary algorithm optimization for horticulture crop management," Agricultural Systems, Elsevier, vol. 173(C), pages 469-481.
    15. Mohammadi, Ali & Rafiee, Shahin & Jafari, Ali & Keyhani, Alireza & Mousavi-Avval, Seyed Hashem & Nonhebel, Sanderine, 2014. "Energy use efficiency and greenhouse gas emissions of farming systems in north Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 724-733.
    16. Mardani Najafabadi, Mostafa & Ziaee, Saman & Nikouei, Alireza & Ahmadpour Borazjani, Mahmoud, 2019. "Mathematical programming model (MMP) for optimization of regional cropping patterns decisions: A case study," Agricultural Systems, Elsevier, vol. 173(C), pages 218-232.
    17. Berenger, Valerie & Verdier-Chouchane, Audrey, 2007. "Multidimensional Measures of Well-Being: Standard of Living and Quality of Life Across Countries," World Development, Elsevier, vol. 35(7), pages 1259-1276, July.
    18. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    19. Elliot, Thomas & Bertrand, Alexandre & Babí Almenar, Javier & Petucco, Claudio & Proença, Vânia & Rugani, Benedetto, 2019. "Spatial optimisation of urban ecosystem services through integrated participatory and multi-objective integer linear programming," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Hui & Li, Xiaojuan & Lu, Hongna & Tong, Ling & Kang, Shaozhong, 2023. "Crop acreage planning for economy- resource- efficiency coordination: Grey information entropy based uncertain model," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Diaz-Gonzalez, Freddy A. & Vuelvas, Jose. & Vallejo, Victoria E. & Patino, D., 2023. "Fertilization rate optimization model for potato crops to maximize yield while reducing polluting nitrogen emissions," Ecological Modelling, Elsevier, vol. 485(C).
    3. Mardani Najafabadi, Mostafa & Magazzino, Cosimo & Valente, Donatella & Mirzaei, Abbas & Petrosillo, Irene, 2023. "A new interval meta-goal programming for sustainable planning of agricultural water-land use nexus," Ecological Modelling, Elsevier, vol. 484(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maestre-Valero, J.F. & Martin-Gorriz, B. & Nicolas, E. & Martinez-Mate, M.A. & Martinez-Alvarez, V., 2018. "Deficit irrigation with reclaimed water in a citrus orchard. Energy and greenhouse-gas emissions analysis," Agricultural Systems, Elsevier, vol. 159(C), pages 93-102.
    2. Heidari, Mohammad Davoud & Turner, Ian & Ardestani-Jaafari, Amir & Pelletier, Nathan, 2021. "Operations research for environmental assessment of crop-livestock production systems," Agricultural Systems, Elsevier, vol. 193(C).
    3. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    4. Sahar Safarian & Sorena Sattari & Runar Unnthorsson & Zeinab Hamidzadeh, 2019. "Prioritization of Bioethanol Production Systems from Agricultural and Waste Agricultural Biomass Using Multi-criteria Decision Making," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-16, March.
    5. Hamed Rafiee & Milad Aminizadeh & Elham Mehrparvar Hosseini & Hanane Aghasafari & Ali Mohammadi, 2022. "A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    6. Zadehdabagh, Nasim & Monavari, Seyed Masoud & Kargari, Nargess & Taghavi, Lobat & Pirasteh, Saeid, 2022. "Sustainability of agroecosystems by indices: A comparative study between indicators of ecological footprint sustainability and emergy analysis; a case study in Dez catchment, Iran," Ecological Modelling, Elsevier, vol. 474(C).
    7. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    8. M. Sirgy, 2011. "Theoretical Perspectives Guiding QOL Indicator Projects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 103(1), pages 1-22, August.
    9. Eyni-Nargeseh, Hamed & Asgharipour, Mohammad Reza & Rahimi-Moghaddam, Sajjad & Gilani, Abdolali & Damghani, Abdolmajid Mahdavi & Azizi, Khosro, 2023. "Which rice farming system is more environmentally friendly in Khuzestan province, Iran? A study based on emergy analysis," Ecological Modelling, Elsevier, vol. 481(C).
    10. Ewa Lechman, 2012. "Technology convergence and digital divides. A country-level evidence for the period 2000–2010," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 31.
    11. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    12. Šarauskis, Egidijus & Masilionytė, Laura & Juknevičius, Darius & Buragienė, Sidona & Kriaučiūnienė, Zita, 2019. "Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation," Energy, Elsevier, vol. 172(C), pages 1151-1160.
    13. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    14. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    15. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    16. Mohammad Mizanur Rahman & Mohammed Zia Uddin Kamal & Senaratne Ranamukhaarachchi & Mohammad Saiful Alam & Mohammad Khairul Alam & Mohammad Arifur Rahman Khan & Mohammad Moshiul Islam & Mohammad Ashraf, 2022. "Effects of Organic Amendments on Soil Aggregate Stability, Carbon Sequestration, and Energy Use Efficiency in Wetland Paddy Cultivation," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    17. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    18. Revoyron, Eva & Le Bail, Marianne & Meynard, Jean-Marc & Gunnarsson, Anita & Seghetti, Marco & Colombo, Luca, 2022. "Diversity and drivers of crop diversification pathways of European farms," Agricultural Systems, Elsevier, vol. 201(C).
    19. Iyappan, Karunya & Babu, Suresh Chandra, 2018. "Building resilient food systems: An analytical review," IFPRI discussion papers 1758, International Food Policy Research Institute (IFPRI).
    20. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:471:y:2022:i:c:s0304380022001703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.