IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i2p136-d1072193.html
   My bibliography  Save this article

Demystifying the Effect of the News (Shocks) on Crypto Market Volatility

Author

Listed:
  • Mukul Bhatnagar

    (University School of Business, Chandigarh University, Mohali 140413, India)

  • Sanjay Taneja

    (University School of Business, Chandigarh University, Mohali 140413, India)

  • Ramona Rupeika-Apoga

    (Faculty of Business, Management and Economics, University of Latvia, LV-1586 Riga, Latvia)

Abstract

The cryptocurrency market has enormous growth potential. In this study, the aim is to investigate how the news (shocks) affects cryptocurrency market volatility. This is significant because, while cryptocurrencies are gaining popularity among investors, the market’s extreme volatility discourages some prospective buyers, while also causing large losses for inexperienced investors. From 8 March 2019 to 30 November 2022, data from Bitcoin, Binance Coin, Ethereum, Dogecoin, and XRP were collected for the current study. The E-GARCH model was applied to the framed dataset to achieve the research aim. We discovered that the value of the size factor for all currencies was statistically significant, indicating that the news (shocks) significantly impacts volatility. Furthermore, volatility persistence in all cryptocurrencies is found to be very high and statistically significant. These study findings can help investors understand the impact of the news (shocks) on volatility in cryptocurrency returns.

Suggested Citation

  • Mukul Bhatnagar & Sanjay Taneja & Ramona Rupeika-Apoga, 2023. "Demystifying the Effect of the News (Shocks) on Crypto Market Volatility," JRFM, MDPI, vol. 16(2), pages 1-16, February.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:2:p:136-:d:1072193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/2/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/2/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    2. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    3. Urquhart, Andrew, 2017. "Price clustering in Bitcoin," Economics Letters, Elsevier, vol. 159(C), pages 145-148.
    4. William Schwert, G., 2002. "Stock volatility in the new millennium: how wacky is Nasdaq?," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 3-26, January.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Apostolos Ampountolas, 2023. "The Effect of COVID-19 on Cryptocurrencies and the Stock Market Volatility: A Two-Stage DCC-EGARCH Model Analysis," JRFM, MDPI, vol. 16(1), pages 1-17, January.
    7. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    8. Ahmet Sensoy & Thiago Christiano Silva & Shaen Corbet & Benjamin Miranda Tabak, 2021. "High-frequency return and volatility spillovers among cryptocurrencies," Applied Economics, Taylor & Francis Journals, vol. 53(37), pages 4310-4328, August.
    9. Apostolos Ampountolas, 2023. "The Effect of COVID-19 on Cryptocurrencies and the Stock Market Volatility -- A Two-Stage DCC-EGARCH Model Analysis," Papers 2307.09137, arXiv.org.
    10. Tran, Vu Le & Leirvik, Thomas, 2020. "Efficiency in the markets of crypto-currencies," Finance Research Letters, Elsevier, vol. 35(C).
    11. Ivo Arnold & Evert Vrugt, 2008. "Fundamental uncertainty and stock market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 18(17), pages 1425-1440.
    12. Urquhart, Andrew, 2022. "Under the hood of the Ethereum blockchain," Finance Research Letters, Elsevier, vol. 47(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Zervas & Emmanouil Stiakakis & Ioannis Athanasiadis & Georgios Tsekouropoulos, 2024. "A Holistic Approach to Define Important Digital Skills for the Digital Society," Societies, MDPI, vol. 14(7), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Ferreira Frascaroli, 2020. "Bitcoin's innovative aspects, return volatility and uncertainty shocks," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 7(3), pages 224-245.
    2. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    3. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    4. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    5. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    6. Wang, Xuetong & Fang, Fang & Ma, Shiqun & Xiang, Lijin & Xiao, Zumian, 2024. "Dynamic volatility spillover among cryptocurrencies and energy markets: An empirical analysis based on a multilevel complex network," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    7. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    8. Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
    9. Achraf Ghorbel & Wajdi Frikha & Yasmine Snene Manzli, 2022. "Testing for asymmetric non-linear short- and long-run relationships between crypto-currencies and stock markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 387-425, September.
    10. Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
    11. Ahmed, Walid M.A., 2020. "Is there a risk-return trade-off in cryptocurrency markets? The case of Bitcoin," Journal of Economics and Business, Elsevier, vol. 108(C).
    12. Onur Özdemir, 2022. "Cue the volatility spillover in the cryptocurrency markets during the COVID-19 pandemic: evidence from DCC-GARCH and wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
    13. Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
    14. Anas Eisa Abdelkreem Mohammed & Henry Mwambi & Bernard Omolo, 2024. "Time-Varying Correlations between JSE.JO Stock Market and Its Partners Using Symmetric and Asymmetric Dynamic Conditional Correlation Models," Stats, MDPI, vol. 7(3), pages 1-16, July.
    15. Dag, Ali & Dag, Asli Z. & Asilkalkan, Abdullah & Simsek, Serhat & Delen, Dursun, 2023. "A Tree Augmented Naïve Bayes-based methodology for classifying cryptocurrency trends," Journal of Business Research, Elsevier, vol. 156(C).
    16. Suardi, Sandy & Rasel, Atiqur Rahman & Liu, Bin, 2022. "On the predictive power of tweet sentiments and attention on bitcoin," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 289-301.
    17. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    18. Ahmed, Walid M.A. & Al Mafrachi, Mustafa, 2021. "Do higher-order realized moments matter for cryptocurrency returns?," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 483-499.
    19. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    20. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:2:p:136-:d:1072193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.