IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v139y2024ics026499932400138x.html
   My bibliography  Save this article

Modelling common bubbles in cryptocurrency prices

Author

Listed:
  • Hall, Mauri K.
  • Jasiak, Joann

Abstract

Bubbles and spikes in cryptocurrency prices increase considerably the risk on investments in these assets. In the traditional time series literature bubbles are viewed as nonstationary and non-estimable components of a process. In this paper, we adopt a different approach and consider the bubbles as inherent features of a strictly stationary causal-noncausal (mixed) Vector Autoregressive (VAR) process. This approach allows us to model and estimate the common bubbles and spikes in cryptocurrency prices. It also provides us linear combinations of cryptocurrencies that eliminate common bubbles analogously to the cointegrating vectors eliminating common trends in unit root processes. They are used to build cryptocurrency portfolios immune to the risk of common bubbles that ensure stable investment strategies. The mixed VAR model is estimated from the US Dollar prices of Bitcoin, Ethereum, Ripple, and Stellar over the period 2017–2019. We document the common bubbles and illustrate the behaviour of bubble-free portfolios.

Suggested Citation

  • Hall, Mauri K. & Jasiak, Joann, 2024. "Modelling common bubbles in cryptocurrency prices," Economic Modelling, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:ecmode:v:139:y:2024:i:c:s026499932400138x
    DOI: 10.1016/j.econmod.2024.106782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026499932400138X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2024.106782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1043-1078, November.
    2. Djogbenou, Antoine & Inan, Emre & Jasiak, Joann, 2023. "Time-varying coefficient DAR model and stability measures for stablecoin prices: An application to Tether," Journal of International Money and Finance, Elsevier, vol. 139(C).
    3. da Gama Silva, Paulo Vitor Jordão & Klotzle, Marcelo Cabus & Pinto, Antonio Carlos Figueiredo & Gomes, Leonardo Lima, 2019. "Herding behavior and contagion in the cryptocurrency market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 22(C), pages 41-50.
    4. Christian Gourieroux & Joann Jasiak, 2023. "Generalized Covariance Estimator," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1315-1327, October.
    5. Gianluca Cubadda & Alain Hecq & Elisa Voisin, 2023. "Detecting Common Bubbles in Multivariate Mixed Causal–Noncausal Models," Econometrics, MDPI, vol. 11(1), pages 1-16, March.
    6. Olivier J. Blanchard & Mark W. Watson, 1982. "Bubbles, Rational Expectations and Financial Markets," NBER Working Papers 0945, National Bureau of Economic Research, Inc.
    7. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
    8. Cross, Jamie L. & Hou, Chenghan & Trinh, Kelly, 2021. "Returns, volatility and the cryptocurrency bubble of 2017–18," Economic Modelling, Elsevier, vol. 104(C).
    9. Kingstone Nyakurukwa & Yudhvir Seetharam, 2023. "Higher moment connectedness of cryptocurrencies: a time-frequency approach," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(3), pages 793-814, September.
    10. Hwang, Soosung & Salmon, Mark, 2004. "Market stress and herding," Journal of Empirical Finance, Elsevier, vol. 11(4), pages 585-616, September.
    11. Christian Gouriéroux & Jean-Michel Zakoïan, 2017. "Local explosion modelling by non-causal process," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 737-756, June.
    12. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1079-1134, November.
    13. Phillips, Peter C.B. & Shi, Shu-Ping, 2018. "Financial Bubble Implosion And Reverse Regression," Econometric Theory, Cambridge University Press, vol. 34(4), pages 705-753, August.
    14. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2022. "Cryptocurrency returns under empirical asset pricing," International Review of Financial Analysis, Elsevier, vol. 82(C).
    15. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-380, October.
    16. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    17. Seo, Myung Hwan & Koo, Bonsoo & Yang, Yangzhuoran Fin, 2024. "Nonlinear dynamics of Kimchi premium," Economic Modelling, Elsevier, vol. 135(C).
    18. Gourieroux, Christian & Jasiak, Joann, 2017. "Noncausal vector autoregressive process: Representation, identification and semi-parametric estimation," Journal of Econometrics, Elsevier, vol. 200(1), pages 118-134.
    19. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1043-1078, November.
    20. Coskun, Esra Alp & Lau, Chi Keung Marco & Kahyaoglu, Hakan, 2020. "Uncertainty and herding behavior: evidence from cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 54(C).
    21. Gianluca Cubadda & Francesco Giancaterini & Alain Hecq & Joann Jasiak, 2023. "Optimization of the Generalized Covariance Estimator in Noncausal Processes," Papers 2306.14653, arXiv.org, revised Jan 2024.
    22. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 393-395, October.
    23. Devenow, Andrea & Welch, Ivo, 1996. "Rational herding in financial economics," European Economic Review, Elsevier, vol. 40(3-5), pages 603-615, April.
    24. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    25. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    26. Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    27. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
    28. Davis, Richard A. & Song, Li, 2020. "Noncausal vector AR processes with application to economic time series," Journal of Econometrics, Elsevier, vol. 216(1), pages 246-267.
    29. Zhao, Yuan & Liu, Nan & Li, Wanpeng, 2022. "Industry herding in crypto assets," International Review of Financial Analysis, Elsevier, vol. 84(C).
    30. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    31. Kung-Sik Chan & Lop-Hing Ho & Howell Tong, 2006. "A note on time-reversibility of multivariate linear processes," Biometrika, Biometrika Trust, vol. 93(1), pages 221-227, March.
    32. Youssef, Mouna & Waked, Sami Sobhi, 2022. "Herding behavior in the cryptocurrency market during COVID-19 pandemic: The role of media coverage," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    33. Bao Doan & Huy Pham & Binh Nguyen Thanh, 2022. "Price discovery in the cryptocurrency market: evidence from institutional activity," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 49(1), pages 111-131, March.
    34. Mukul Bhatnagar & Sanjay Taneja & Ramona Rupeika-Apoga, 2023. "Demystifying the Effect of the News (Shocks) on Crypto Market Volatility," JRFM, MDPI, vol. 16(2), pages 1-16, February.
    35. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Mingoli, 2024. "Modeling Common Bubbles: A Mixed Causal Non-Causal Dynamic Factor Model," Tinbergen Institute Discussion Papers 24-072/III, Tinbergen Institute.
    2. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    3. Gianluca Cubadda & Francesco Giancaterini & Alain Hecq & Joann Jasiak, 2023. "Optimization of the Generalized Covariance Estimator in Noncausal Processes," Papers 2306.14653, arXiv.org, revised Jan 2024.
    4. Francisco Blasques & Siem Jan Koopman & Gabriele Mingoli, 2023. "Observation-Driven filters for Time- Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics," Tinbergen Institute Discussion Papers 23-065/III, Tinbergen Institute, revised 01 Mar 2024.
    5. Christian Gourieroux & Andrew Hencic & Joann Jasiak, 2021. "Forecast performance and bubble analysis in noncausal MAR(1, 1) processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 301-326, March.
    6. Blasques, Francisco & Koopman, Siem Jan & Nientker, Marc, 2022. "A time-varying parameter model for local explosions," Journal of Econometrics, Elsevier, vol. 227(1), pages 65-84.
    7. Shuping Shi & Arafat Rahman & Ben Zhe Wang, 2020. "Australian Housing Market Booms: Fundamentals or Speculation?☆," The Economic Record, The Economic Society of Australia, vol. 96(315), pages 381-401, December.
    8. Chen, Yan & Zhang, Lei & Bouri, Elie, 2024. "Co-Bubble transmission across clean and dirty Cryptocurrencies: Network and portfolio analysis," Journal of International Money and Finance, Elsevier, vol. 145(C).
    9. Ozkan Haykir & Ibrahim Yagli, 2022. "Speculative bubbles and herding in cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-33, December.
    10. Mudassar Hasan & Muhammad Abubakr Naeem & Muhammad Arif & Syed Jawad Hussain Shahzad & Xuan Vinh Vo, 2022. "Liquidity connectedness in cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    11. Gharib, Cheima & Mefteh-Wali, Salma & Serret, Vanessa & Ben Jabeur, Sami, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Resources Policy, Elsevier, vol. 74(C).
    12. Chen, Bin-xia & Sun, Yan-lin, 2024. "Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    13. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    14. Christian Kubitza, 2021. "Tackling the Volatility Paradox: Spillover Persistence and Systemic Risk," ECONtribute Discussion Papers Series 079, University of Bonn and University of Cologne, Germany.
    15. Yu, Lu & Li, Yanglin, 2023. "Testing factor models when asset bubbles occur: A time-varying perspective," Economic Modelling, Elsevier, vol. 124(C).
    16. Esteve, Vicente & Prats, María A., 2023. "Testing explosive bubbles with time-varying volatility: The case of Spanish public debt," Finance Research Letters, Elsevier, vol. 51(C).
    17. Gomis-Porqueras, Pedro & Shi, Shuping & Tan, David, 2022. "Gold as a financial instrument," Journal of Commodity Markets, Elsevier, vol. 27(C).
    18. Michaelides, Panayotis G. & Tsionas, Efthymios G. & Konstantakis, Konstantinos N., 2016. "Non-linearities in financial bubbles: Theory and Bayesian evidence from S&P500," Journal of Financial Stability, Elsevier, vol. 24(C), pages 61-70.
    19. Moreira, Afonso M. & Martins, Luis F., 2020. "A new mechanism for anticipating price exuberance," International Review of Economics & Finance, Elsevier, vol. 65(C), pages 199-221.
    20. Gianluca Cubadda & Alain Hecq & Elisa Voisin, 2023. "Detecting Common Bubbles in Multivariate Mixed Causal–Noncausal Models," Econometrics, MDPI, vol. 11(1), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:139:y:2024:i:c:s026499932400138x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.