IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.09137.html
   My bibliography  Save this paper

The Effect of COVID-19 on Cryptocurrencies and the Stock Market Volatility -- A Two-Stage DCC-EGARCH Model Analysis

Author

Listed:
  • Apostolos Ampountolas

Abstract

This research examines the correlations between the return volatility of cryptocurrencies, global stock market indices, and the spillover effects of the COVID-19 pandemic. For this purpose, we employed a two-stage multivariate volatility exponential GARCH (EGARCH) model with an integrated dynamic conditional correlation (DCC) approach to measure the impact on the financial portfolio returns from 2019 to 2020. Moreover, we used value-at-risk (VaR) and value-at-risk measurements based on the Cornish-Fisher expansion (CFVaR). The empirical results show significant long- and short-term spillover effects. The two-stage multivariate EGARCH model's results show that the conditional volatilities of both asset portfolios surge more after positive news and respond well to previous shocks. As a result, financial assets have low unconditional volatility and the lowest risk when there are no external interruptions. Despite the financial assets' sensitivity to shocks, they exhibit some resistance to fluctuations in market confidence. The VaR performance comparison results with the assets portfolios differ. During the COVID-19 outbreak, the Dow (DJI) index reports VaR's highest loss, followed by the S&P500. Conversely, the CFVaR reports negative risk results for the entire cryptocurrency portfolio during the pandemic, except for the Ethereum (ETH).

Suggested Citation

  • Apostolos Ampountolas, 2023. "The Effect of COVID-19 on Cryptocurrencies and the Stock Market Volatility -- A Two-Stage DCC-EGARCH Model Analysis," Papers 2307.09137, arXiv.org.
  • Handle: RePEc:arx:papers:2307.09137
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.09137
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uddin, Gazi Salah & Yahya, Muhammad & Goswami, Gour Gobinda & Lucey, Brian & Ahmed, Ali, 2022. "Stock market contagion during the COVID-19 pandemic in emerging economies," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 302-309.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Huthaifa Alqaralleh & Alessandra Canepa, 2021. "Evidence of Stock Market Contagion during the COVID-19 Pandemic: A Wavelet-Copula-GARCH Approach," JRFM, MDPI, vol. 14(7), pages 1-18, July.
    4. Caporale, Guglielmo Maria & Plastun, Alex, 2019. "The day of the week effect in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 31(C).
    5. Akaike, Hirotugu, 1981. "Likelihood of a model and information criteria," Journal of Econometrics, Elsevier, vol. 16(1), pages 3-14, May.
    6. Apostolos Ampountolas, 2021. "Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models," Forecasting, MDPI, vol. 3(3), pages 1-16, August.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    9. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    10. Ashraf, Badar Nadeem, 2020. "Economic impact of government interventions during the COVID-19 pandemic: International evidence from financial markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    11. Urquhart, Andrew & Zhang, Hanxiong, 2019. "Is Bitcoin a hedge or safe haven for currencies? An intraday analysis," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 49-57.
    12. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    13. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    14. Ali, Fahad & Jiang, Yuexiang & Sensoy, Ahmet, 2021. "Downside risk in Dow Jones Islamic equity indices: Precious metals and portfolio diversification before and after the COVID-19 bear market," Research in International Business and Finance, Elsevier, vol. 58(C).
    15. Nguyen, Khanh Quoc, 2022. "The correlation between the stock market and Bitcoin during COVID-19 and other uncertainty periods," Finance Research Letters, Elsevier, vol. 46(PA).
    16. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    17. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    18. Umar, Zaghum & Gubareva, Mariya, 2020. "A time–frequency analysis of the impact of the Covid-19 induced panic on the volatility of currency and cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 28(C).
    19. Itay Goldstein & Ralph S J Koijen & Holger M Mueller, 2021. "COVID-19 and Its Impact on Financial Markets and the Real Economy [A model of endogenous risk intolerance and LSAPs: Asset prices and aggregate demand in a “COVID-19” shock]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5135-5148.
    20. Conlon, Thomas & McGee, Richard, 2020. "Safe haven or risky hazard? Bitcoin during the Covid-19 bear market," Finance Research Letters, Elsevier, vol. 35(C).
    21. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    22. Apostolos Ampountolas, 2022. "Cryptocurrencies Intraday High-Frequency Volatility Spillover Effects Using Univariate and Multivariate GARCH Models," IJFS, MDPI, vol. 10(3), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apostolos Ampountolas, 2023. "Comparative Analysis of Machine Learning, Hybrid, and Deep Learning Forecasting Models: Evidence from European Financial Markets and Bitcoins," Forecasting, MDPI, vol. 5(2), pages 1-15, June.
    2. Mukul Bhatnagar & Sanjay Taneja & Ramona Rupeika-Apoga, 2023. "Demystifying the Effect of the News (Shocks) on Crypto Market Volatility," JRFM, MDPI, vol. 16(2), pages 1-16, February.
    3. Apostolos Ampountolas, 2023. "Comparative Analysis of Machine Learning, Hybrid, and Deep Learning Forecasting Models Evidence from European Financial Markets and Bitcoins," Papers 2307.08853, arXiv.org.
    4. Anas Eisa Abdelkreem Mohammed & Henry Mwambi & Bernard Omolo, 2024. "Time-Varying Correlations between JSE.JO Stock Market and Its Partners Using Symmetric and Asymmetric Dynamic Conditional Correlation Models," Stats, MDPI, vol. 7(3), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Khalfaoui & M. Boutahar, 2012. "Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," Working Papers halshs-00793068, HAL.
    2. Piao, Xiaorui & Mei, Bin & Xue, Yuan, 2016. "Comparing the financial performance of timber REITs and other REITs," Forest Policy and Economics, Elsevier, vol. 72(C), pages 115-121.
    3. Apostolos Ampountolas, 2023. "The Effect of COVID-19 on Cryptocurrencies and the Stock Market Volatility: A Two-Stage DCC-EGARCH Model Analysis," JRFM, MDPI, vol. 16(1), pages 1-17, January.
    4. Zouheir Mighri, 2018. "On the Dynamic Linkages Among International Emerging Currencies," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 427-473, June.
    5. Michel Ferreira Cardia Haddad & Szabolcs Blazsek & Philip Arestis & Franz Fuerst & Hsia Hua Sheng, 2023. "The two-component Beta-t-QVAR-M-lev: a new forecasting model," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 379-401, December.
    6. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    7. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    8. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    9. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    10. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    11. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value‐At‐Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    12. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    13. Marçal, Emerson Fernandes & Pereira, Pedro L. Valls, 2008. "Testing the Hypothesis of Contagion Using Multivariate Volatility Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(2), November.
    14. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    16. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    17. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    18. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
    19. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    20. Annastiina Silvennoinen & Timo Teräsvirta, 2009. "Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 373-411, Fall.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.09137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.