IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v64y2019icp221-231.html
   My bibliography  Save this article

The adaptive market hypothesis in the high frequency cryptocurrency market

Author

Listed:
  • Chu, Jeffrey
  • Zhang, Yuanyuan
  • Chan, Stephen

Abstract

This paper investigates the adaptive market hypothesis (AMH) with respect to the high frequency markets of the two largest cryptocurrencies — Bitcoin and Ethereum, versus the Euro and US Dollar. Our findings are consistent with the AMH and show that the efficiency of the markets varies over time. We also discuss possible news and events which coincide with significant changes in the market efficiency. Furthermore, we analyse the effect of the sentiment of these news and other factors (events) on the market efficiency in the high frequency setting, and provide a simple event analysis to investigate whether specific factors affect the market efficiency/inefficiency. The results show that the sentiment and types of news and events may not be significant factor in determining the efficiency of cryptocurrency markets.

Suggested Citation

  • Chu, Jeffrey & Zhang, Yuanyuan & Chan, Stephen, 2019. "The adaptive market hypothesis in the high frequency cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 221-231.
  • Handle: RePEc:eee:finana:v:64:y:2019:i:c:p:221-231
    DOI: 10.1016/j.irfa.2019.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521919300821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2019.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Persistence in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 46(C), pages 141-148.
    2. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    3. J. Carlos Escanciano & Ignacio N. Lobato, 2009. "Testing the Martingale Hypothesis," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 20, pages 972-1003, Palgrave Macmillan.
    4. Lo, Andrew W. & MacKinlay, A. Craig, 1989. "The size and power of the variance ratio test in finite samples : A Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 40(2), pages 203-238, February.
    5. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    6. Marie Briere & Kim Oosterlinck & Ariane Szafarz, 2015. "Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoins," Post-Print CEB, ULB -- Universite Libre de Bruxelles, vol. 16(6), pages 365-373.
    7. Stephen Chan & Jeffrey Chu & Saralees Nadarajah & Joerg Osterrieder, 2017. "A Statistical Analysis of Cryptocurrencies," JRFM, MDPI, vol. 10(2), pages 1-23, May.
    8. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    9. Alvarez-Ramirez, J. & Rodriguez, E. & Ibarra-Valdez, C., 2018. "Long-range correlations and asymmetry in the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 948-955.
    10. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    11. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    12. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    13. Brauneis, Alexander & Mestel, Roland, 2018. "Price discovery of cryptocurrencies: Bitcoin and beyond," Economics Letters, Elsevier, vol. 165(C), pages 58-61.
    14. Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
    15. Manuel Dominguez & Ignacio Lobato, 2003. "Testing the Martingale Difference Hypothesis," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 351-377.
    16. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    17. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    18. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    19. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    20. Irene Henriques & Perry Sadorsky, 2018. "Can Bitcoin Replace Gold in an Investment Portfolio?," JRFM, MDPI, vol. 11(3), pages 1-19, August.
    21. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    22. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    23. Ma, Feng & Wei, Yu & Huang, Dengshi & Zhao, Lin, 2013. "Cross-correlations between West Texas Intermediate crude oil and the stock markets of the BRIC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5356-5368.
    24. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Generalized spectral tests for the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 134(1), pages 151-185, September.
    25. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Yoon, Seong-Min, 2018. "Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets," Finance Research Letters, Elsevier, vol. 27(C), pages 228-234.
    26. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    27. Kim, Jae H., 2009. "Automatic variance ratio test under conditional heteroskedasticity," Finance Research Letters, Elsevier, vol. 6(3), pages 179-185, September.
    28. Zhang, Yuanyuan & Chan, Stephen & Chu, Jeffrey & Nadarajah, Saralees, 2019. "Stylised facts for high frequency cryptocurrency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 598-612.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    3. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    4. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    5. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    6. Yi, Eojin & Ahn, Kwangwon & Choi, M.Y., 2022. "Cryptocurrency: Not far from equilibrium," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    7. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    8. Nils Bundi & Marc Wildi, 2019. "Bitcoin and market-(in)efficiency: a systematic time series approach," Digital Finance, Springer, vol. 1(1), pages 47-65, November.
    9. Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
    10. Natália Costa & César Silva & Paulo Ferreira, 2019. "Long-Range Behaviour and Correlation in DFA and DCCA Analysis of Cryptocurrencies," IJFS, MDPI, vol. 7(3), pages 1-12, September.
    11. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    12. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    13. Aggarwal, Divya & Chandrasekaran, Shabana & Annamalai, Balamurugan, 2020. "A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    14. Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
    15. Derick Quintino & Jessica Campoli & Heloisa Burnquist & Paulo Ferreira, 2020. "Efficiency of the Brazilian Bitcoin: A DFA Approach," IJFS, MDPI, vol. 8(2), pages 1-9, April.
    16. Yuanyuan Zhang & Stephen Chan & Jeffrey Chu & Hana Sulieman, 2020. "On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market," JRFM, MDPI, vol. 13(1), pages 1-14, January.
    17. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    18. Köchling, Gerrit & Müller, Janis & Posch, Peter N., 2019. "Does the introduction of futures improve the efficiency of Bitcoin?," Finance Research Letters, Elsevier, vol. 30(C), pages 367-370.
    19. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    20. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.

    More about this item

    Keywords

    Bitcoin; Ethereum; Martingale difference hypothesis; Adaptive market hypothesis; Efficient market hypothesis;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:64:y:2019:i:c:p:221-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.