IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i12p6119-d1170099.html
   My bibliography  Save this article

Advanced Sentiment Analysis for Managing and Improving Patient Experience: Application for General Practitioner (GP) Classification in Northamptonshire

Author

Listed:
  • Aavash Raj Pandey

    (Department of Business Systems & Operations, University of Northampton, Northampton NN1 5 PH, UK)

  • Mahdi Seify

    (Department of Business Systems & Operations, University of Northampton, Northampton NN1 5 PH, UK)

  • Udoka Okonta

    (Department of Business Systems & Operations, University of Northampton, Northampton NN1 5 PH, UK)

  • Amin Hosseinian-Far

    (Department of Business Systems & Operations, University of Northampton, Northampton NN1 5 PH, UK)

Abstract

This paper presents a novel analytical approach for improving patients’ experience in healthcare settings. The analytical tool uses a classifier and a recommend management approach to facilitate decision making in a timely manner. The designed methodology comprises of 4 key stages, which include developing a bot to scrap web data while performing sentiment analysis and extracting keywords from National Health Service (NHS) rate and review webpages, building a classifier with Waikato Environment for Knowledge Analysis (WEKA), analyzing speech with Python, and using Microsoft Excel for analysis. In the selected context, a total of 178 reviews were extracted from General Practitioners (GP) websites within Northamptonshire County, UK. Accordingly, 4764 keywords such as “kind”, “exactly”, “discharged”, “long waits”, “impolite staff”, “worse”, “problem”, “happy”, “late” and “excellent” were selected. In addition, 178 reviews were analyzed to highlight trends and patterns. The classifier model grouped GPs into gold, silver, and bronze categories. The outlined analytical approach complements the current patient feedback analysis approaches by GPs. This paper solely relied upon the feedback available on the NHS’ rate and review webpages. The contribution of the paper is to highlight the integration of easily available tools to perform higher level of analysis that provides understanding about patients’ experience. The context and tools used in this study for ranking services within the healthcare domain is novel in nature, since it involves extracting useful insights from the provided feedback.

Suggested Citation

  • Aavash Raj Pandey & Mahdi Seify & Udoka Okonta & Amin Hosseinian-Far, 2023. "Advanced Sentiment Analysis for Managing and Improving Patient Experience: Application for General Practitioner (GP) Classification in Northamptonshire," IJERPH, MDPI, vol. 20(12), pages 1-11, June.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:12:p:6119-:d:1170099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/12/6119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/12/6119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheard, Laura & Marsh, Claire & O'Hara, Jane & Armitage, Gerry & Wright, John & Lawton, Rebecca, 2017. "The Patient Feedback Response Framework – Understanding why UK hospital staff find it difficult to make improvements based on patient feedback: A qualitative study," Social Science & Medicine, Elsevier, vol. 178(C), pages 19-27.
    2. Guangyu Hu & Xueyan Han & Huixuan Zhou & Yuanli Liu, 2019. "Public Perception on Healthcare Services: Evidence from Social Media Platforms in China," IJERPH, MDPI, vol. 16(7), pages 1-10, April.
    3. Yue Kang & Zhao Cai & Chee-Wee Tan & Qian Huang & Hefu Liu, 2020. "Natural language processing (NLP) in management research: A literature review," Journal of Management Analytics, Taylor & Francis Journals, vol. 7(2), pages 139-172, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miles Sibley & Ray Earwicker & Jörg W. Huber, 2018. "Making best use of patient experience," Journal of Clinical Nursing, John Wiley & Sons, vol. 27(23-24), pages 4239-4241, December.
    2. Arpan Kumar Kar & P. S. Varsha & Shivakami Rajan, 2023. "Unravelling the Impact of Generative Artificial Intelligence (GAI) in Industrial Applications: A Review of Scientific and Grey Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 659-689, December.
    3. Alin-Gabriel Vaduva & Simona-Vasilica Oprea & Dragos-Catalin Barbu, 2023. "Understanding Customers' Opinion using Web Scraping and Natural Language Processing," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 537-544, August.
    4. Lu, Qinli & Chesbrough, Henry, 2022. "Measuring open innovation practices through topic modelling: Revisiting their impact on firm financial performance," Technovation, Elsevier, vol. 114(C).
    5. Miia Marika Jansson & Marja Harjumaa & Ari‐Pekka Puhto & Minna Pikkarainen, 2020. "Patients’ satisfaction and experiences during elective primary fast‐track total hip and knee arthroplasty journey: A qualitative study," Journal of Clinical Nursing, John Wiley & Sons, vol. 29(3-4), pages 567-582, February.
    6. Kuijper, Syb & Felder, Martijn & Clegg, Stewart & Bal, Roland & Wallenburg, Iris, 2024. "“We don't experiment with our patients!” An ethnographic account of the epistemic politics of (re)designing nursing work," Social Science & Medicine, Elsevier, vol. 340(C).
    7. Zimei Liu & Kefan Xie & Ling Li & Yong Chen, 2020. "A paradigm of safety management in Industry 4.0," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 632-645, July.
    8. Jing Li & Daniel Shapiro & Anastasia Ufimtseva, 2024. "Regulating inbound foreign direct investment in a world of hegemonic rivalry: the evolution and diffusion of US policy," Journal of International Business Policy, Palgrave Macmillan, vol. 7(2), pages 147-165, June.
    9. Afiq Izzudin A. Rahim & Mohd Ismail Ibrahim & Kamarul Imran Musa & Sook-Ling Chua & Najib Majdi Yaacob, 2021. "Assessing Patient-Perceived Hospital Service Quality and Sentiment in Malaysian Public Hospitals Using Machine Learning and Facebook Reviews," IJERPH, MDPI, vol. 18(18), pages 1-28, September.
    10. Segun Akinola & Arnesh Telukdarie, 2023. "Sustainable Digital Transformation in Healthcare: Advancing a Digital Vascular Health Innovation Solution," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    11. Tian, Yu-Xin & Zhang, Chuan, 2023. "An end-to-end deep learning model for solving data-driven newsvendor problem with accessibility to textual review data," International Journal of Production Economics, Elsevier, vol. 265(C).
    12. Mohammad Alamgir Hossain & Md. Maruf Hossan Chowdhury & Ilias O. Pappas & Bhimaraya Metri & Laurie Hughes & Yogesh K. Dwivedi, 2023. "Fake news on Facebook and their impact on supply chain disruption during COVID-19," Annals of Operations Research, Springer, vol. 327(2), pages 683-711, August.
    13. Indu Khurana & Daniel J. Lee, 2023. "Gender bias in high stakes pitching: an NLP approach," Small Business Economics, Springer, vol. 60(2), pages 485-502, February.
    14. Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
    15. Tao Shu & Zhiyi Wang & Huading Jia & Wenjin Zhao & Jixian Zhou & Tao Peng, 2022. "Consumers’ Opinions towards Public Health Effects of Online Games: An Empirical Study Based on Social Media Comments in China," IJERPH, MDPI, vol. 19(19), pages 1-19, October.
    16. Chen, Shiuann-Shuoh & Choubey, Bhaskar & Singh, Vinay, 2021. "A neural network based price sensitive recommender model to predict customer choices based on price effect," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    17. Weifeng Jia & Shuo Wang & Yongping Xie & Zifeng Chen & Kaixin Gong, 2022. "Disruptive technology identification of intelligent logistics robots in AIoT industry: Based on attributes and functions analysis," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(3), pages 557-568, May.
    18. Adrian LUPASC, 2023. "The Potential of Natural Language Technology in Transforming Educational Processes," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 3, pages 142-147.
    19. Wei Zhang & Linhui Sun & Xinping Wang & Anbo Wu, 2022. "The influence of AI word‐of‐mouth system on consumers' purchase behaviour: The mediating effect of risk perception," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(3), pages 516-530, May.
    20. Jing Ge & Feng Wang & Hongxia Sun & Liuliu Fu & Mingwei Sun, 2020. "Research on the maturity of big data management capability of intelligent manufacturing enterprise," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 646-662, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:12:p:6119-:d:1170099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.