IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i3p1581-d738605.html
   My bibliography  Save this article

Emission Characteristics of NO x and SO 2 during the Combustion of Antibiotic Mycelial Residue

Author

Listed:
  • Yaxin Ge

    (School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
    School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden)

  • Guangyi Zhang

    (School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
    Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China)

  • Jianling Zhang

    (Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China)

  • Wennan Zhang

    (Department of Chemical Engineering, Mid Sweden University, 85170 Sundsvall, Sweden)

  • Lijie Cui

    (School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The antibiotic mycelial residue (AMR) generated from cephalosporin C production is a hazardous organic waste, which is usually disposed of by landfilling that causes potential secondary environmental pollution. AMR combustion can be an effective method to treat AMR. In order to develop clean combustion technologies for safe disposal and energy recovery from various AMRs, the emission characteristics of NO x and SO 2 from AMR combustion were studied experimentally in this work. It was found that the fuel-N is constituted by 85% protein nitrogen and 15% inorganic nitrogen, and the fuel-S by 78% inorganic sulfur and 22% organic sulfur. Nitrogen oxide emissions mainly occur at the volatile combustion stage when the temperature rises to 400 °C, while the primary sulfur oxide emission appears at the char combustion stage above 400 °C. Increasing the combustion temperature and airflow cause higher NO x emissions. High moisture content in AMR can significantly reduce the NO x emission by lowering the combustion temperature and generating more reducing gases such as CO. For the SO 2 emission, the combustion temperature (700 to 900 °C), airflow and AMR water content do not seem to exhibit obvious effects. The presence of CaO significantly inhibits SO 2 emission, especially for the SO 2 produced during the AMR char combustion because of the good control effect on the direct emission of inorganic SO 2 . Employing air/fuel staging technologies in combination with in-situ desulfurization by calcium oxide/salts added in the combustor with operation temperatures lower than 900 °C should be a potential technology for the clean disposal of AMRs.

Suggested Citation

  • Yaxin Ge & Guangyi Zhang & Jianling Zhang & Wennan Zhang & Lijie Cui, 2022. "Emission Characteristics of NO x and SO 2 during the Combustion of Antibiotic Mycelial Residue," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1581-:d:738605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/3/1581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/3/1581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yuan & Lin, Weigang & Wu, Hao & Jensen, Peter Arendt & Song, Wenli & Du, Lin & Li, Songgeng, 2021. "Steam gasification of char derived from penicillin mycelial dreg and lignocellulosic biomass: Influence of P, K and Ca on char reactivity," Energy, Elsevier, vol. 228(C).
    2. Qi, Jianhui & Han, Kuihua & Wang, Qian & Gao, Jie, 2017. "Carbonization of biomass: Effect of additives on alkali metals residue, SO2 and NO emission of chars during combustion," Energy, Elsevier, vol. 130(C), pages 560-569.
    3. Zhao, Bingtao & Su, Yaxin & Liu, Dunyu & Zhang, Hang & Liu, Wang & Cui, Guomin, 2016. "SO2/NOx emissions and ash formation from algae biomass combustion: Process characteristics and mechanisms," Energy, Elsevier, vol. 113(C), pages 821-830.
    4. Wang, Chang’an & Zhou, Lei & Fan, Gaofeng & Yuan, Maobo & Zhao, Lei & Tang, Guantao & Liu, Chengchang & Che, Defu, 2021. "Experimental study on ash morphology, fusibility, and mineral transformation during co-combustion of antibiotic filter residue and biomass," Energy, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Jin & Zhao, Bingtao & Su, Yaxin, 2019. "Advanced control of NO emission from algal biomass combustion using loaded iron-based additives," Energy, Elsevier, vol. 185(C), pages 229-238.
    2. Jianhui Qi & Haopeng Li & Qian Wang & Kuihua Han, 2021. "Combustion Characteristics, Kinetics, SO 2 and NO Release of Low-Grade Biomass Materials and Briquettes," Energies, MDPI, vol. 14(9), pages 1-13, May.
    3. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    4. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & El-Salam, M. Abd & Zhou, Wei & Zhang, Ruihan & Ren, Xiaohan, 2018. "Assessment of primary air on corn straw in a fixed bed combustion using Eulerian-Eulerian approach," Energy, Elsevier, vol. 151(C), pages 501-519.
    5. Ma, Rui & Zhang, Hai & Fan, Weidong, 2024. "A study of the interaction between volatile and char on the mechanism of NO and N2O conversion during nitrogen-containing biomass model (amino acids) combustion," Energy, Elsevier, vol. 297(C).
    6. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
    7. Reinmöller, Markus & Schreiner, Marcus & Laabs, Marcel & Scharm, Christoph & Yao, Zhitong & Guhl, Stefan & Neuroth, Manuela & Meyer, Bernd & Gräbner, Martin, 2023. "Formation and transformation of mineral phases in biomass ashes and evaluation of the feedstocks for application in high-temperature processes," Renewable Energy, Elsevier, vol. 210(C), pages 627-639.
    8. Choi, Byungchul & Kim, Cheolho & Yang, Seongsu & Lee, Sejin & Kim, Moonyong & Byun, Sungchun & Jung, Gyeong-gap, 2020. "Effective components on explosive combustion characteristics of wood charcoals," Energy, Elsevier, vol. 197(C).
    9. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    10. Haili Liu & Xu Zhang & Qingchao Hong, 2021. "Emission Characteristics of Pollution Gases from the Combustion of Food Waste," Energies, MDPI, vol. 14(19), pages 1-11, October.
    11. Zhao, Zhenghui & Wang, Ruikun & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Bottom ash characteristics and pollutant emission during the co-combustion of pulverized coal with high mass-percentage sewage sludge," Energy, Elsevier, vol. 171(C), pages 809-818.
    12. Meng, Xiaoxiao & Zhou, Wei & Yan, Yonghong & Ren, Xiaohan & Ismail, Tamer M. & Sun, Rui, 2020. "Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed," Energy, Elsevier, vol. 210(C).
    13. Silva, F.T.M. & Ataíde, C.H., 2019. "Valorization of eucalyptus urograndis wood via carbonization: Product yields and characterization," Energy, Elsevier, vol. 172(C), pages 509-516.
    14. Wang, Qian & Cao, Qiankun & Wang, Rui & Wang, Peifu & Zhao, Yanhua & Li, Shijie & Han, Feifei, 2023. "Influence of phosphorus based additives on nitrogen and sulfur pollutants emissions during densified biochar combustion," Energy, Elsevier, vol. 275(C).
    15. Yin, Chungen, 2020. "Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability," Energy, Elsevier, vol. 196(C).
    16. Khiari, Besma & Jeguirim, Mejdi & Limousy, Lionel & Bennici, Simona, 2019. "Biomass derived chars for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 253-273.
    17. Fang, Peiwen & Gong, Zhiqiang & Wang, Zhenbo & Wang, Zhentong & Meng, Fanzhi, 2019. "Study on combustion and emission characteristics of microalgae and its extraction residue with TG-MS," Renewable Energy, Elsevier, vol. 140(C), pages 884-894.
    18. Xinjie, Liao & Shihong, Zhang & Xincheng, Wang & Jinai, Shao & Xiong, Zhang & Xianhua, Wang & Haiping, Yang & Hanping, Chen, 2021. "Co-combustion of wheat straw and camphor wood with coal slime: Thermal behaviour, kinetics, and gaseous pollutant emission characteristics," Energy, Elsevier, vol. 234(C).
    19. Yang, Wei & Zhu, Youjian & Li, Yu & Cheng, Wei & Zhang, Wennan & Yang, Haiping & Tan, Zhiwu & Chen, Hanping, 2022. "Mitigation of particulate matter emissions from co-combustion of rice husk with cotton stalk or cornstalk," Renewable Energy, Elsevier, vol. 190(C), pages 893-902.
    20. Zacharczuk, Wojciech & Andruszkiewicz, Artur & Tatarek, Andrzej & Alahmer, Ali & Alsaqoor, Sameh, 2021. "Effect of Ca-based additives on the capture of SO2 during combustion of pulverized lignite," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1581-:d:738605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.