IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp192-203.html
   My bibliography  Save this article

Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content

Author

Listed:
  • Meng, Xiaoxiao
  • Sun, Rui
  • Ismail, Tamer M.
  • Zhou, Wei
  • Ren, Xiaohan
  • Zhang, Ruihan

Abstract

This experiment was conducted on fixed bed combustion in a one-dimensional bench. The effects of ash and moisture content on the combustion characteristics of corn straw were determined. The two parameters directly relate to the burning rate and affect combustion efficiency and the release of gas. The bed temperature distribution, mass loss rate and gas composition were measured in the bed. The results show that the optimum char combustion efficiency was achieved at 10% moisture content of corn combustion. A slight increasing the moisture content to 10% can obtain a higher bed temperature and accelerate the ignition rate in the char oxidation stage, while there is also a slight decrease in the conversion ratio of C to CO. The conversion rate of S to SO2 for 10% moisture content was higher with the temperature zone above 1000 °C. With the increased ash content, there was a slight increase in the average ignition rate; the bottom bed temperature increased with a serious ash slagging. C was converted to CO and presented a slightly increasing trend for higher ash content and the conversion of N to HCN. This work provides an overall understanding of corn combustion for large boiler system.

Suggested Citation

  • Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:192-203
    DOI: 10.1016/j.energy.2018.06.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    2. de Souza-Santos, Marcio L., 2017. "Proposals for power generation based on processes consuming biomass-glycerol slurries," Energy, Elsevier, vol. 120(C), pages 959-974.
    3. Kazagic, A. & Smajevic, I., 2007. "Experimental investigation of ash behavior and emissions during combustion of Bosnian coal and biomass," Energy, Elsevier, vol. 32(10), pages 2006-2016.
    4. Duan, Xiaoli & Jiang, Yong & Wang, Beibei & Zhao, Xiuge & Shen, Guofeng & Cao, Suzhen & Huang, Nan & Qian, Yan & Chen, Yiting & Wang, Limin, 2014. "Household fuel use for cooking and heating in China: Results from the first Chinese Environmental Exposure-Related Human Activity Patterns Survey (CEERHAPS)," Applied Energy, Elsevier, vol. 136(C), pages 692-703.
    5. Zhai, Ming & Wang, Xinyu & Zhang, Yu & Dong, Peng & Qi, Guoli & Huang, Yudong, 2015. "Characteristics of rice husk tar secondary thermal cracking," Energy, Elsevier, vol. 93(P2), pages 1321-1327.
    6. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    7. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & El-Salam, M. Abd & Zhou, Wei & Zhang, Ruihan & Ren, Xiaohan, 2018. "Assessment of primary air on corn straw in a fixed bed combustion using Eulerian-Eulerian approach," Energy, Elsevier, vol. 151(C), pages 501-519.
    8. Zhao, Bingtao & Su, Yaxin & Liu, Dunyu & Zhang, Hang & Liu, Wang & Cui, Guomin, 2016. "SO2/NOx emissions and ash formation from algae biomass combustion: Process characteristics and mechanisms," Energy, Elsevier, vol. 113(C), pages 821-830.
    9. Khodaei, Hassan & Al-Abdeli, Yasir M. & Guzzomi, Ferdinando & Yeoh, Guan H., 2015. "An overview of processes and considerations in the modelling of fixed-bed biomass combustion," Energy, Elsevier, vol. 88(C), pages 946-972.
    10. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Dongji & Liu, Liansheng & Yuan, Ye & Yang, Hua & Zhou, Yixing & Duan, Ruanze, 2020. "Design and key heating power parameters of a newly-developed household biomass briquette heating boiler," Renewable Energy, Elsevier, vol. 147(P1), pages 1371-1379.
    2. Meng, Xiaoxiao & Zhou, Wei & Yan, Yonghong & Ren, Xiaohan & Ismail, Tamer M. & Sun, Rui, 2020. "Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed," Energy, Elsevier, vol. 210(C).
    3. Nataša Dragutinović & Isabel Höfer & Martin Kaltschmitt, 2021. "Fuel Improvement Measures for Particulate Matter Emission Reduction during Corn Cob Combustion," Energies, MDPI, vol. 14(15), pages 1-23, July.
    4. Tanui, J.K. & Kioni, P.N. & Mirre, T. & Nowitzki, M. & Karuri, N.W., 2020. "The influence of particle packing density on wood combustion in a fixed bed under oxy-fuel conditions," Energy, Elsevier, vol. 194(C).
    5. Zachl, A. & Soria-Verdugo, A. & Buchmayr, M. & Gruber, J. & Anca-Couce, A. & Scharler, R. & Hochenauer, C., 2022. "Stratified downdraft gasification of wood chips with a significant bark content," Energy, Elsevier, vol. 261(PB).
    6. Grażyna Łaska & Ayodeji Raphael Ige, 2023. "A Review: Assessment of Domestic Solid Fuel Sources in Nigeria," Energies, MDPI, vol. 16(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xiaoxiao & Zhou, Wei & Yan, Yonghong & Ren, Xiaohan & Ismail, Tamer M. & Sun, Rui, 2020. "Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed," Energy, Elsevier, vol. 210(C).
    2. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & El-Salam, M. Abd & Zhou, Wei & Zhang, Ruihan & Ren, Xiaohan, 2018. "Assessment of primary air on corn straw in a fixed bed combustion using Eulerian-Eulerian approach," Energy, Elsevier, vol. 151(C), pages 501-519.
    3. Weiqiang Zhu & Yun Zhang, 2024. "Household Energy Clean Transition Mechanisms under Market Failures: A Government Financing Perspective," Sustainability, MDPI, vol. 16(13), pages 1-29, July.
    4. Yang Yang & Ji-Qin Ni & Weiqing Bao & Lei Zhao & Guang Hui Xie, 2019. "Potential Reductions in Greenhouse Gas and Fine Particulate Matter Emissions Using Corn Stover for Ethanol Production in China," Energies, MDPI, vol. 12(19), pages 1-14, September.
    5. El may, Yassine & Jeguirim, Mejdi & Dorge, Sophie & Trouvé, Gwenaelle & Said, Rachid, 2012. "Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres," Energy, Elsevier, vol. 44(1), pages 702-709.
    6. Zhongdong Yu & Wei Liu & Liming Chen & Serkan Eti & Hasan Dinçer & Serhat Yüksel, 2019. "The Effects of Electricity Production on Industrial Development and Sustainable Economic Growth: A VAR Analysis for BRICS Countries," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    7. Zuo, Alec & Hou, Lingling & Huang, Zeying, 2020. "How does farmers' current usage of crop straws influence the willingness-to-accept price to sell?," Energy Economics, Elsevier, vol. 86(C).
    8. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    9. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    10. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    12. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Chengheng & Liu, Hao & Lester, Edward & Wu, Tao, 2020. "In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends," Energy, Elsevier, vol. 199(C).
    14. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    15. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    16. Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
    17. Fu Wang & Hong Geng & Donglan Zha & Chaoqun Zhang, 2023. "Multidimensional Energy Poverty in China: Measurement and Spatio-Temporal Disparities Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 168(1), pages 45-78, August.
    18. Yaxin Ge & Guangyi Zhang & Jianling Zhang & Wennan Zhang & Lijie Cui, 2022. "Emission Characteristics of NO x and SO 2 during the Combustion of Antibiotic Mycelial Residue," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    19. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Moreira, Maria Teresa, 2017. "The environmental effect of substituting energy crops for food waste as feedstock for biogas production," Energy, Elsevier, vol. 137(C), pages 1130-1143.
    20. Cheng, Wei & Shao, Jing'ai & Zhu, Youjian & Zhang, Wennan & Jiang, Hao & Hu, Junhao & Zhang, Xiong & Yang, Haiping & Chen, Hanping, 2022. "Effect of oxidative torrefaction on particulate matter emission from agricultural biomass pellet combustion in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 189(C), pages 39-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:192-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.