IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p17082-d1008339.html
   My bibliography  Save this article

Influences of Climate Change and Land Use Change on the Habitat Suitability of Bharal in the Sanjiangyuan District, China

Author

Listed:
  • Shengwang Bao

    (School of Economics and Management, Zhejiang Ocean University, Zhoushan 316022, China)

  • Fan Yang

    (School of Economics and Management, Zhejiang Ocean University, Zhoushan 316022, China)

Abstract

One of the biggest dangers to the degradation of biodiversity worldwide is climate change. Its oscillations in the future could result in potential alterations to species populations and habitat structure. With Sanjiangyuan District as the study site, an uncrewed aerial vehicle (UAV) was utilized to investigate the number and location of the bharal ( Pseudois nayaur ). The Maximum Entropy model and the Minimum Cumulative Resistance model (MaxEnt-MCR) were coupled to simulate the distribution of wildlife. On this basis, the future geographical distribution of bharal under different climate scenarios was simulated, and the ecological corridor and habitat centroid of bharal were revealed. The results showed that the suitable area of the bharal habitat was 4669 km 2 , which was mainly concentrated in the Maduo, Qumalai, and Gonghe counties. The potential distribution of the species under different future climate scenarios had a decreasing trend. Under the SSP-245 scenario, the habitat area of bharal in 2030 and 2050 decreased by 25.68 and 44.61% compared with the present situation and cumulatively decreased by 1199 and 2083 km 2 , respectively. Under the SSP-585 scenario, the habitat area of bharal in 2030 and 2050 decreased by 27.5 and 48.44%, with a total reduction of 1284 and 2262 km 2 , respectively. Furthermore, a complete loss of habitat was predicted in Gonghe County by 2050. In addition, it was observed that the landscape structure in Sanjiangyuan District would be more fragmented and complex. The continued climate change will seriously affect the habitat distribution of this species. Therefore, preventive measures, such as protecting habitat areas and establishing ecological corridors for bharal, should be implemented in the Sanjiangyuan District. Such measures should not focus solely on the potential degradation but should also be extended to include potential distribution areas for future migration.

Suggested Citation

  • Shengwang Bao & Fan Yang, 2022. "Influences of Climate Change and Land Use Change on the Habitat Suitability of Bharal in the Sanjiangyuan District, China," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:17082-:d:1008339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/17082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/17082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barker, Justin R. & MacIsaac, Hugh J., 2022. "Species distribution models applied to mosquitoes: Use, quality assessment, and recommendations for best practice," Ecological Modelling, Elsevier, vol. 472(C).
    2. Benjamin M. Kraemer & Rachel M. Pilla & R. Iestyn Woolway & Orlane Anneville & Syuhei Ban & William Colom-Montero & Shawn P. Devlin & Martin T. Dokulil & Evelyn E. Gaiser & K. David Hambright & Dag O., 2021. "Climate change drives widespread shifts in lake thermal habitat," Nature Climate Change, Nature, vol. 11(6), pages 521-529, June.
    3. J. Alan Pounds & Michael P. L. Fogden & John H. Campbell, 1999. "Biological response to climate change on a tropical mountain," Nature, Nature, vol. 398(6728), pages 611-615, April.
    4. Jonathan M. Chase & Shane A. Blowes & Tiffany M. Knight & Katharina Gerstner & Felix May, 2020. "Ecosystem decay exacerbates biodiversity loss with habitat loss," Nature, Nature, vol. 584(7820), pages 238-243, August.
    5. Pascoe, Sean & Doshi, Amar & Kovac, Mladen & Austin, Angelica, 2019. "Estimating coastal and marine habitat values by combining multi-criteria methods with choice experiments," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    6. Shengwang Bao & Fan Yang, 2022. "Spatio-Temporal Dynamic of the Land Use/Cover Change and Scenario Simulation in the Southeast Coastal Shelterbelt System Construction Project Region of China," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    7. Scott R. Loarie & Philip B. Duffy & Healy Hamilton & Gregory P. Asner & Christopher B. Field & David D. Ackerly, 2009. "The velocity of climate change," Nature, Nature, vol. 462(7276), pages 1052-1055, December.
    8. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    9. Abdulwahab, Umarfarooq A. & Hammill, Edd & Hawkins, Charles P., 2022. "Choice of climate data affects the performance and interpretation of species distribution models," Ecological Modelling, Elsevier, vol. 471(C).
    10. Richard P. Cincotta & Jennifer Wisnewski & Robert Engelman, 2000. "Human population in the biodiversity hotspots," Nature, Nature, vol. 404(6781), pages 990-992, April.
    11. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    12. Xiaoyu Wu & Shikui Dong & Shiliang Liu & Xukun Su & Yuhui Han & Jianbin Shi & Yong Zhang & Zhenzhen Zhao & Wei Sha & Xiang Zhang & Feng Gao & Donghua Xu, 2017. "Predicting the shift of threatened ungulates’ habitats with climate change in Altun Mountain National Nature Reserve of the Northwestern Qinghai-Tibetan Plateau," Climatic Change, Springer, vol. 142(3), pages 331-344, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeyeong Choe & James H. Thorne, 2019. "Climate exposure of East Asian temperate forests suggests transboundary climate adaptation strategies are needed," Climatic Change, Springer, vol. 156(1), pages 51-67, September.
    2. Katherine Dagon & Daniel P. Schrag, 2019. "Quantifying the effects of solar geoengineering on vegetation," Climatic Change, Springer, vol. 153(1), pages 235-251, March.
    3. R. Iestyn Woolway, 2023. "The pace of shifting seasons in lakes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Karyn Tabor & Jennifer Hewson & Hsin Tien & Mariano González-Roglich & David Hole & John W. Williams, 2018. "Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation," Land, MDPI, vol. 7(3), pages 1-14, July.
    5. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    6. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    7. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    8. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    9. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    10. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    11. Nicoletta Cannone & M. Guglielmin & P. Convey & M. R. Worland & S. E. Favero Longo, 2016. "Vascular plant changes in extreme environments: effects of multiple drivers," Climatic Change, Springer, vol. 134(4), pages 651-665, February.
    12. Mouhamadou Bamba Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    13. Mouhamadou Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    14. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    15. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    16. Donohue, John G. & Piiroinen, Petri T., 2015. "Mathematical modelling of seasonal migration with applications to climate change," Ecological Modelling, Elsevier, vol. 299(C), pages 79-94.
    17. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    18. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    19. Fisher, Brendan & Christopher, Treg, 2007. "Poverty and biodiversity: Measuring the overlap of human poverty and the biodiversity hotspots," Ecological Economics, Elsevier, vol. 62(1), pages 93-101, April.
    20. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:17082-:d:1008339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.