IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p11902-d920549.html
   My bibliography  Save this article

Influence of COVID-19-Related Restrictions on the Prevalence of Overweight and Obese Czech Children

Author

Listed:
  • Anna Vážná

    (Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic)

  • Jana Vignerová

    (Institute of Endocrinology, Národní 8, 110 00 Prague, Czech Republic)

  • Marek Brabec

    (Institute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou Věží 271/2, 182 00 Prague, Czech Republic
    National Institute of Public Health, Srobarova 48, 100 00 Prague, Czech Republic)

  • Jan Novák

    (Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic)

  • Bohuslav Procházka

    (MUDr Bohuslav Procházka s.r.o., Radnická 635, 284 01 Kutná Hora, Czech Republic)

  • Antonín Gabera

    (Zdravotní Středisko Krásné Březno, U Pivovarské Zahrady 5, 400 07 Ústí nad Labem, Czech Republic)

  • Petr Sedlak

    (Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic)

Abstract

Apart from influencing the health of the worldwide population, the COVID-19 pandemic changed the day-to-day life of all, including children. A sedentary lifestyle along with the transformation of eating and sleep habits took place in the child population. These changes created a highly obesogenic environment. Our aim was to evaluate the current weight in the child population and identify the real effects of the pandemic. Height and weight data were collected by pediatricians from the pre-COVID-19 and post-COVID-19 periods from 3517 children (1759 boys and 1758 girls) aged 4.71 to 17.33 years. We found a significant rise in the z-score BMI between pediatric visits in the years 2019 and 2021 in both sexes aged 7, 9, 11, and 13 years. Especially alarming were the percentages of (severely) obese boys at the ages of 9 and 11 years, which exceed even the percentages of overweight boys. With the use of statistical modeling, we registered the most dramatic increment at around 12 years of age in both sexes. Based on our research in the Czech Republic, we can confirm the predictions that were given at the beginning of the pandemic that COVID-19-related restrictions worsened the already present problem of obesity and excess weight in children.

Suggested Citation

  • Anna Vážná & Jana Vignerová & Marek Brabec & Jan Novák & Bohuslav Procházka & Antonín Gabera & Petr Sedlak, 2022. "Influence of COVID-19-Related Restrictions on the Prevalence of Overweight and Obese Czech Children," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:11902-:d:920549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/11902/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/11902/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wood, Simon N., 2016. "Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i07).
    2. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    2. Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
    3. Du, Qianqian & Mieno, Taro & Bullock, David & Edge, Brittani, 2021. "Economically Optimal Nitrogen Side-dressing Based on Vegetation Indices from Satellite Images Through On-farm Experiments," Land, Farm & Agribusiness Management Department 316596, Harper Adams University, Land, Farm & Agribusiness Management Department.
    4. Oskar Allerbo & Rebecka Jörnsten, 2022. "Flexible, non-parametric modeling using regularized neural networks," Computational Statistics, Springer, vol. 37(4), pages 2029-2047, September.
    5. Oliver Stoner & Gavin Shaddick & Theo Economou & Sophie Gumy & Jessica Lewis & Itzel Lucio & Giulia Ruggeri & Heather Adair‐Rohani, 2020. "Global household energy model: a multivariate hierarchical approach to estimating trends in the use of polluting and clean fuels for cooking," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 815-839, August.
    6. Oliver Stoner & Theo Economou, 2020. "Multivariate hierarchical frameworks for modeling delayed reporting in count data," Biometrics, The International Biometric Society, vol. 76(3), pages 789-798, September.
    7. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    8. Shaun R. Seaman & Pantelis Samartsidis & Meaghan Kall & Daniela De Angelis, 2022. "Nowcasting COVID‐19 deaths in England by age and region," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1266-1281, November.
    9. Oliver Stoner & Alba Halliday & Theo Economou, 2023. "Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method," Biometrics, The International Biometric Society, vol. 79(3), pages 2537-2550, September.
    10. Frank van Berkum & Katrien Antonio & Michel Vellekoop, 2021. "Quantifying longevity gaps using micro‐level lifetime data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 548-570, April.
    11. Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2020. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Risks, MDPI, vol. 8(1), pages 1-79, February.
    12. Anne-Sophie Krah & Zoran Nikoli'c & Ralf Korn, 2019. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Papers 1909.02182, arXiv.org.
    13. Konstantin Sering & Petar Milin & R. Harald Baayen, 2018. "Language comprehension as a multi‐label classification problem," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 339-353, August.
    14. Sonja Greven & Fabian Scheipl, 2020. "Comments on: Inference and computation with Generalized Additive Models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 343-350, June.
    15. Du, Qianqian & Mieno, Taro & Bullock, David & Edge, Brittani, 2021. "Economically Optimal Nitrogen Side-dressing Based on Vegetation Indices from Satellite Images Through On-farm Experiments," Agri-Tech Economics Papers 316596, Harper Adams University, Land, Farm & Agribusiness Management Department.
    16. Calabrese, Raffaella & Dombrowski, Timothy & Mandel, Antoine & Pace, R. Kelley & Zanin, Luca, 2024. "Impacts of extreme weather events on mortgage risks and their evolution under climate change: A case study on Florida," European Journal of Operational Research, Elsevier, vol. 314(1), pages 377-392.
    17. Chen, Kefei & O'Leary, Rebecca A. & Evans, Fiona H., 2019. "A simple and parsimonious generalised additive model for predicting wheat yield in a decision support tool," Agricultural Systems, Elsevier, vol. 173(C), pages 140-150.
    18. Aoife K. Hurley & James Sweeney, 2024. "Irish Property Price Estimation Using A Flexible Geo-spatial Smoothing Approach: What is the Impact of an Address?," The Journal of Real Estate Finance and Economics, Springer, vol. 68(3), pages 355-393, April.
    19. Francesco Brizzi & Paul J. Birrell & Martyn T. Plummer & Peter Kirwan & Alison E. Brown & Valerie C. Delpech & O. Noel Gill & Daniela Angelis, 2019. "Extending Bayesian back-calculation to estimate age and time specific HIV incidence," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 757-780, October.
    20. Stoner, Oliver & Economou, Theo, 2020. "An advanced hidden Markov model for hourly rainfall time series," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:11902-:d:920549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.