IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v69y2020i4p815-839.html
   My bibliography  Save this article

Global household energy model: a multivariate hierarchical approach to estimating trends in the use of polluting and clean fuels for cooking

Author

Listed:
  • Oliver Stoner
  • Gavin Shaddick
  • Theo Economou
  • Sophie Gumy
  • Jessica Lewis
  • Itzel Lucio
  • Giulia Ruggeri
  • Heather Adair‐Rohani

Abstract

In 2017 an estimated 3 billion people used polluting fuels and technologies as their primary cooking solution, with 3.8 million deaths annually attributed to household exposure to the resulting fine particulate matter air pollution. Currently, health burdens are calculated by using aggregations of fuel types, e.g. solid fuels, as country level estimates of the use of specific fuel types, e.g. wood and charcoal, are unavailable. To expand the knowledge base about effects of household air pollution on health, we develop and implement a novel Bayesian hierarchical model, based on generalized Dirichlet–multinomial distributions, that jointly estimates non‐linear trends in the use of eight key fuel types, overcoming several data‐specific challenges including missing or combined fuel use values. We assess model fit by using within‐sample predictive analysis and an out‐of‐sample prediction experiment to evaluate the model's forecasting performance.

Suggested Citation

  • Oliver Stoner & Gavin Shaddick & Theo Economou & Sophie Gumy & Jessica Lewis & Itzel Lucio & Giulia Ruggeri & Heather Adair‐Rohani, 2020. "Global household energy model: a multivariate hierarchical approach to estimating trends in the use of polluting and clean fuels for cooking," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 815-839, August.
  • Handle: RePEc:bla:jorssc:v:69:y:2020:i:4:p:815-839
    DOI: 10.1111/rssc.12428
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12428
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wood, Simon N., 2016. "Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i07).
    2. Gavin Shaddick & Matthew L. Thomas & Amelia Green & Michael Brauer & Aaron van Donkelaar & Rick Burnett & Howard H. Chang & Aaron Cohen & Rita Van Dingenen & Carlos Dora & Sophie Gumy & Yang Liu & Ran, 2018. "Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(1), pages 231-253, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Lolli & Antonio Maria Coruzzolo & Samuele Marinello & Asia Traini & Rita Gamberini, 2022. "A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments," Sustainability, MDPI, vol. 14(16), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    2. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. C. Forlani & S. Bhatt & M. Cameletti & E. Krainski & M. Blangiardo, 2020. "A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    4. Alexander Kreuzer & Luciana Dalla Valle & Claudia Czado, 2022. "A Bayesian non‐linear state space copula model for air pollution in Beijing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 613-638, June.
    5. Oliver Stoner & Theo Economou, 2020. "Multivariate hierarchical frameworks for modeling delayed reporting in count data," Biometrics, The International Biometric Society, vol. 76(3), pages 789-798, September.
    6. Eric S. Coker & Laura Cavalli & Enrico Fabrizi & Gianni Guastella & Enrico Lippo & Maria Laura Parisi & Nicola Pontarollo & Massimiliano Rizzati & Alessandro Varacca & Sergio Vergalli, 2020. "The Effects of Air Pollution on COVID-19 Related Mortality in Northern Italy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 611-634, August.
    7. Shaun R. Seaman & Pantelis Samartsidis & Meaghan Kall & Daniela De Angelis, 2022. "Nowcasting COVID‐19 deaths in England by age and region," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1266-1281, November.
    8. Oliver Stoner & Alba Halliday & Theo Economou, 2023. "Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method," Biometrics, The International Biometric Society, vol. 79(3), pages 2537-2550, September.
    9. Niru Senthilkumar & Mark Gilfether & Francesca Metcalf & Armistead G. Russell & James A. Mulholland & Howard H. Chang, 2019. "Application of a Fusion Method for Gas and Particle Air Pollutants between Observational Data and Chemical Transport Model Simulations Over the Contiguous United States for 2005–2014," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    10. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    11. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    12. Anna Vážná & Jana Vignerová & Marek Brabec & Jan Novák & Bohuslav Procházka & Antonín Gabera & Petr Sedlak, 2022. "Influence of COVID-19-Related Restrictions on the Prevalence of Overweight and Obese Czech Children," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    13. Giovanni Vinti & Mentore Vaccari, 2022. "A Simplified Model for Estimating Household Air Pollution in Challenging Contexts: A Case Study from Ghana," Clean Technol., MDPI, vol. 4(3), pages 1-11, July.
    14. Chen, Kefei & O'Leary, Rebecca A. & Evans, Fiona H., 2019. "A simple and parsimonious generalised additive model for predicting wheat yield in a decision support tool," Agricultural Systems, Elsevier, vol. 173(C), pages 140-150.
    15. Francesco Brizzi & Paul J. Birrell & Martyn T. Plummer & Peter Kirwan & Alison E. Brown & Valerie C. Delpech & O. Noel Gill & Daniela Angelis, 2019. "Extending Bayesian back-calculation to estimate age and time specific HIV incidence," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 757-780, October.
    16. Stoner, Oliver & Economou, Theo, 2020. "An advanced hidden Markov model for hourly rainfall time series," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:69:y:2020:i:4:p:815-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.