IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018450.html
   My bibliography  Save this article

Catalytic transfer hydrogenation with methanol over Pt/C catalyst for synergistic hydrothermal hydrogenation of palmitic acid

Author

Listed:
  • Lin, Min
  • Yan, Yuhao
  • Jiang, Daxin
  • Zhou, Shaomin
  • Zhan, Lulu
  • Li, Rui
  • Song, Xianliang
  • Wu, Yulong

Abstract

Achieving hydrothermal hydrogenation and deoxygenation of bio-oil with high water content such as microalgae-based bio-oil still faces significant challenges. Traditional upgrading processes require a large amount of H2. The objective of current research uses methanol and formic acid as a hydrogen donor to achieve the hydrothermal hydrodeoxygenation of palmitic acid (a model of microalgae-based bio-oil) to prepare pentadecane over Pt/C catalyst without the need for additional H2 supply. The research findings have shown that the H2 supply mechanism of methanol and formic acid in synergy with palmitic acid hydrothermal hydrodeoxygenation is obviously different. Formic acid is directly decomposed to produce H2, while methanol undergoes aqueous steam reforming to produce H2 in synergy with palmitic acid hydrodeoxygenation. More importantly, methyl palmitate, a typical model compound of the first-generation biodiesel, achieved efficient deoxygenation without the addition of H2 and hydrogen donors. At 300 °C, the yield of pentadecane reached 91.25 % within 150 min. The hydrothermal stability test shows that the decrease in Pt content and specific surface area (SBET), as well as the destruction of pore structure, are the main reasons for the decrease in activity of the Pt/C catalyst after cycling. The H2 production efficiency of hydrogen donors possesses a significant impact on the hydrodeoxygenation of palmitic acid and therefore more efficient catalysts need to be developed.

Suggested Citation

  • Lin, Min & Yan, Yuhao & Jiang, Daxin & Zhou, Shaomin & Zhan, Lulu & Li, Rui & Song, Xianliang & Wu, Yulong, 2024. "Catalytic transfer hydrogenation with methanol over Pt/C catalyst for synergistic hydrothermal hydrogenation of palmitic acid," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018450
    DOI: 10.1016/j.energy.2024.132071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.