IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i17p10607-d897412.html
   My bibliography  Save this article

Construction and Evaluation of a Safe Community Evaluation Index System—A Study of Urban China

Author

Listed:
  • Chao Feng

    (School of Public Administration, Northwest University, Xi’an 710127, China)

  • Jingjie Wu

    (School of Economics, Northwest University of Political Science and Law, Xi’an 710063, China)

  • Juan Du

    (School of Management, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract

A community is the basic unit of a city. Scientific and effective evaluations of the construction effect of safe communities can improve the construction capacity of community disaster prevention and mitigation; it is also the basis for improving urban public safety and realizing stable and sustainable urban operation. First, following the development framework of a safe community and taking two typical communities in Xi’an, China, as examples, based on the literature and expert opinions, the initial indicators of a safe community are determined. Second, based on existing data, the literature and expert opinions, a questionnaire is designed, and the reliability and validity of the questionnaire are tested by exploratory factor analysis. Third, the indicators for evaluating the construction ability of a safe community are selected. Finally, an evaluation model of the construction ability of safe communities is constructed by using the comprehensive weighting technique for order of preference by similarity to the ideal solution (TOPSIS), which is applied to the actual evaluation of eighteen representative communities in Xi’an. The main findings are as follows. (1) The sense of community security is the collective consciousness of community residents. It includes not only the security and feelings of community residents themselves, but also the cognition of the impact of social policies at the macro and micro-levels on community residents, their families, and even the whole community. (2) From the three levels of consciousness, technology, and policy as the starting points for the construction of the theoretical model of a safe community, organizational resilience, accessibility resilience, social environmental resilience, and capital resilience are found to be the main influencing factors in the construction of a safe community. (3) Using questionnaires and expert interviews to preliminarily screen evaluation indicators and using the comprehensive weighting TOPSIS method to build an evaluation model can effectively avoid the defects of traditional empirical research on the validity and reliability of methods. (4) The ranking of the eighteen representative communities in the empirical analysis is basically consistent with the selection results of the national comprehensive disaster reduction demonstration community, which indicates the effectiveness and accuracy of the indicators and algorithms.

Suggested Citation

  • Chao Feng & Jingjie Wu & Juan Du, 2022. "Construction and Evaluation of a Safe Community Evaluation Index System—A Study of Urban China," IJERPH, MDPI, vol. 19(17), pages 1-22, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10607-:d:897412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/17/10607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/17/10607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuanyuan Guo & Linchuan Yang & Wenke Huang & Yi Guo, 2020. "Traffic Safety Perception, Attitude, and Feeder Mode Choice of Metro Commute: Evidence from Shenzhen," IJERPH, MDPI, vol. 17(24), pages 1-20, December.
    2. Anna Bozza & Domenico Asprone & Gaetano Manfredi, 2015. "Developing an integrated framework to quantify resilience of urban systems against disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1729-1748, September.
    3. Saud Alshehri & Yacine Rezgui & Haijiang Li, 2015. "Disaster community resilience assessment method: a consensus-based Delphi and AHP approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 395-416, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoran Su & Chang Liu & Donghui Dai & Wenkai Chen & Zhen Zhang & Yaowu Wang, 2023. "Distribution Characteristics and Influencing Factors of the National Comprehensive Disaster-Reduction Demonstration Community in China," Land, MDPI, vol. 12(8), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiansheng Chen & Ruisong Quan, 2021. "A spatiotemporal analysis of urban resilience to the COVID-19 pandemic in the Yangtze River Delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 829-854, March.
    2. Irina Tumini & Paula Villagra-Islas & Geraldine Herrmann-Lunecke, 2017. "Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1363-1392, February.
    3. Mikhail Rogov & Céline Rozenblat, 2018. "Urban Resilience Discourse Analysis: Towards a Multi-Level Approach to Cities," Sustainability, MDPI, vol. 10(12), pages 1-21, November.
    4. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    5. Zhaowei Yin & Yuanyuan Guo & Mengshu Zhou & Yixuan Wang & Fengliang Tang, 2024. "Integration between Dockless Bike-Sharing and Buses: The Effect of Urban Road Network Characteristics," Land, MDPI, vol. 13(8), pages 1-27, August.
    6. Lu Liu & Yun Luo & Jingjing Pei & Huiquan Wang & Jixia Li & Ying Li, 2021. "Temporal and Spatial Differentiation in Urban Resilience and Its Influencing Factors in Henan Province," Sustainability, MDPI, vol. 13(22), pages 1-26, November.
    7. Yibin Ao & Ling Tan & Qiqi Feng & Liyao Tan & Hongfu Li & Yan Wang & Tong Wang & Yunfeng Chen, 2022. "Livelihood Capital Effects on Famers’ Strategy Choices in Flood-Prone Areas—A Study in Rural China," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
    8. Sedigheh Meimandi Parizi & Mohammad Taleai & Ayyoob Sharifi, 2022. "A GIS-Based Multi-Criteria Analysis Framework to Evaluate Urban Physical Resilience against Earthquakes," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    9. Jie Huang & Zimin Sun & Minzhe Du, 2022. "Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China," Land, MDPI, vol. 11(9), pages 1-18, September.
    10. Hoang Long Nguyen & Rajendra Akerkar, 2020. "Modelling, Measuring, and Visualising Community Resilience: A Systematic Review," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    11. Maomao Zhang & Weigang Chen & Kui Cai & Xin Gao & Xuesong Zhang & Jinxiang Liu & Zhiyuan Wang & Deshou Li, 2019. "Analysis of the Spatial Distribution Characteristics of Urban Resilience and Its Influencing Factors: A Case Study of 56 Cities in China," IJERPH, MDPI, vol. 16(22), pages 1-22, November.
    12. Mingshen Shao & Dong Xu & Yuchao Wang & Ziyi Wang & Xingzhou Liang & Li Li, 2022. "Quantitative evaluation of weathering degree through Fuzzy-AHP method and petrophysics analysis for sandstone carvings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1547-1566, June.
    13. Mei Yang & Mengyun Jiao & Jinyu Zhang, 2022. "Research on Urban Resilience and Influencing Factors of Chengdu-Chongqing Economic Circle," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    14. Hui Xu & Shuxiu Li & Yongtao Tan & Bin Xing, 2022. "Comprehensive Resilience Assessment of Complex Urban Public Spaces: A Perspective of Promoting Sustainability," Land, MDPI, vol. 11(6), pages 1-23, June.
    15. Hongxun Xiang & Xia Heng & Boleng Zhai & Lichen Yang, 2024. "Digital and Culture: Towards More Resilient Urban Community Governance," Land, MDPI, vol. 13(6), pages 1-18, May.
    16. Cai Jia & Yanyan Chen & Tingzhao Chen & Yanan Li & Luzhou Lin, 2022. "Evolutionary Game Analysis on Sharing Bicycles and Metro Strategies: Impact of Phasing out Subsidies for Bicycle–Metro Integration Model," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    17. Iskandar Zainuddin Rela & Zaimah Ramli & Muhammad Zamrun Firihu & Weka Widayati & Abd Hair Awang & Nasaruddin Nasaruddin, 2022. "COVID-19 Risk Management and Stakeholder Action Strategies: Conceptual Frameworks for Community Resilience in the Context of Indonesia," IJERPH, MDPI, vol. 19(15), pages 1-19, July.
    18. Chen, Weiyi & Zhang, Limao, 2021. "Resilience assessment of regional areas against earthquakes using multi-source information fusion," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Chen Zhang & Yangfan Li & Xiaodong Zhu, 2016. "A Social-Ecological Resilience Assessment and Governance Guide for Urbanization Processes in East China," Sustainability, MDPI, vol. 8(11), pages 1-18, October.
    20. Sameer Ali & Abraham George, 2022. "Modelling a community resilience index for urban flood-prone areas of Kerala, India (CRIF)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 261-286, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10607-:d:897412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.