IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p10108-d889184.html
   My bibliography  Save this article

Evaluating the Sensitivity of Heat Wave Definitions among North Carolina Physiographic Regions

Author

Listed:
  • Jagadeesh Puvvula

    (Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA)

  • Azar M. Abadi

    (Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA)

  • Kathryn C. Conlon

    (Department of Public Health Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA)

  • Jared J. Rennie

    (National Centers for Environmental Information, Asheville, NC 28801, USA)

  • Hunter Jones

    (Medical Sciences Interdepartmental Area, Office of Graduate Studies, University of Nebraska Medical Center, Omaha, NE 68198, USA)

  • Jesse E. Bell

    (Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
    School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
    Daugherty Water for Food Global Institute, University of Nebraska, Lincoln, NE 68583, USA)

Abstract

Exposure to extreme heat is a known risk factor that is associated with increased heat-related illness (HRI) outcomes. The relevance of heat wave definitions (HWDs) could change across health conditions and geographies due to the heterogenous climate profile. This study compared the sensitivity of 28 HWDs associated with HRI emergency department visits over five summer seasons (2011–2016), stratified by two physiographic regions (Coastal and Piedmont) in North Carolina. The HRI rate ratios associated with heat waves were estimated using the generalized linear regression framework assuming a negative binomial distribution. We compared the Akaike Information Criterion (AIC) values across the HWDs to identify an optimal HWD. In the Coastal region, HWDs based on daily maximum temperature with a threshold > 90th percentile for two or more consecutive days had the optimal model fit. In the Piedmont region, HWD based on the daily minimum temperature with a threshold value > 90th percentile for two or more consecutive days was optimal. The HWDs with optimal model performance included in this study captured moderate and frequent heat episodes compared to the National Weather Service (NWS) heat products. This study compared the HRI morbidity risk associated with epidemiologic-based HWDs and with NWS heat products. Our findings could be used for public health education and suggest recalibrating NWS heat products.

Suggested Citation

  • Jagadeesh Puvvula & Azar M. Abadi & Kathryn C. Conlon & Jared J. Rennie & Hunter Jones & Jesse E. Bell, 2022. "Evaluating the Sensitivity of Heat Wave Definitions among North Carolina Physiographic Regions," IJERPH, MDPI, vol. 19(16), pages 1-13, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10108-:d:889184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/10108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/10108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hajat, S. & Sheridan, S.C. & Allen, M.J. & Pascal, M. & Laaidi, K. & Yagouti, A. & Bickis, U. & Tobias, A. & Bourque, D. & Armstrong, B.G. & Kosatsky, T., 2010. "Heat-health warning systems: A comparison of the predictive capacity of different approaches to identifying dangerously hot days," American Journal of Public Health, American Public Health Association, vol. 100(6), pages 1137-1144.
    2. Guirguis, Kristen & Basu, Rupa & Al‐Delaimy, Wael K & Benmarhnia, Tarik & Clemesha, Rachel ES & Corcos, Isabel & Guzman‐Morales, Janin & Hailey, Brittany & Small, Ivory & Tardy, Alexander & Vashishtha, 2018. "Heat, Disparities, and Health Outcomes in San Diego County's Diverse Climate Zones," University of California at San Diego, Economics Working Paper Series qt7hd4618z, Department of Economics, UC San Diego.
    3. Tiffany Smith & Benjamin Zaitchik & Julia Gohlke, 2013. "Heat waves in the United States: definitions, patterns and trends," Climatic Change, Springer, vol. 118(3), pages 811-825, June.
    4. Sabrina K. Beckmann & Michael Hiete, 2020. "Predictors Associated with Health-Related Heat Risk Perception of Urban Citizens in Germany," IJERPH, MDPI, vol. 17(3), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    2. Ghasem Toloo & Gerard FitzGerald & Peter Aitken & Kenneth Verrall & Shilu Tong, 2013. "Evaluating the effectiveness of heat warning systems: systematic review of epidemiological evidence," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 58(5), pages 667-681, October.
    3. Lawrence A. Palinkas & Michael S. Hurlburt & Cecilia Fernandez & Jessenia De Leon & Kexin Yu & Erika Salinas & Erika Garcia & Jill Johnston & Md. Mostafijur Rahman & Sam J. Silva & Rob S. McConnell, 2022. "Vulnerable, Resilient, or Both? A Qualitative Study of Adaptation Resources and Behaviors to Heat Waves and Health Outcomes of Low-Income Residents of Urban Heat Islands," IJERPH, MDPI, vol. 19(17), pages 1-19, September.
    4. Jintao Zhang & Fang Wang, 2019. "Regional Temperature Response in Central Asia to National Committed Emission Reductions," IJERPH, MDPI, vol. 16(15), pages 1-15, July.
    5. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    6. Fadly Syah Arsad & Rozita Hod & Norfazilah Ahmad & Mazni Baharom & Fredolin Tangang, 2022. "The Malay-Version Knowledge, Risk Perception, Attitude and Practice Questionnaire on Heatwaves: Development and Construct Validation," IJERPH, MDPI, vol. 19(4), pages 1-11, February.
    7. K. Oleson & A. Monaghan & O. Wilhelmi & M. Barlage & N. Brunsell & J. Feddema & L. Hu & D. Steinhoff, 2015. "Interactions between urbanization, heat stress, and climate change," Climatic Change, Springer, vol. 129(3), pages 525-541, April.
    8. Michela Bonafede & Miriam Levi & Emma Pietrafesa & Alessandra Binazzi & Alessandro Marinaccio & Marco Morabito & Iole Pinto & Francesca de’ Donato & Valentina Grasso & Tiziano Costantini & Alessandro , 2022. "Workers’ Perception Heat Stress: Results from a Pilot Study Conducted in Italy during the COVID-19 Pandemic in 2020," IJERPH, MDPI, vol. 19(13), pages 1-18, July.
    9. Noriko Takahashi & Rieko Nakao & Kayo Ueda & Masaji Ono & Masahide Kondo & Yasushi Honda & Masahiro Hashizume, 2015. "Community Trial on Heat Related-Illness Prevention Behaviors and Knowledge for the Elderly," IJERPH, MDPI, vol. 12(3), pages 1-27, March.
    10. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.
    11. Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
    12. Pierre Masselot & Fateh Chebana & Éric Lavigne & Céline Campagna & Pierre Gosselin & Taha B.M.J. Ouarda, 2019. "Toward an Improved Air Pollution Warning System in Quebec," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
    13. Erika Austhof & Heidi E. Brown, 2022. "Global Warming’s Six MTurks: A Secondary Analysis of a US-Based Online Crowdsourcing Market," IJERPH, MDPI, vol. 19(14), pages 1-9, July.
    14. Alisa L. Hass & Kelsey N. Ellis & Lisa Reyes Mason & Jon M. Hathaway & David A. Howe, 2016. "Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States," IJERPH, MDPI, vol. 13(1), pages 1-19, January.
    15. Dianne Lowe & Kristie L. Ebi & Bertil Forsberg, 2011. "Heatwave Early Warning Systems and Adaptation Advice to Reduce Human Health Consequences of Heatwaves," IJERPH, MDPI, vol. 8(12), pages 1-26, December.
    16. K. W. Oleson & G. B. Anderson & B. Jones & S. A. McGinnis & B. Sanderson, 2018. "Avoided climate impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5," Climatic Change, Springer, vol. 146(3), pages 377-392, February.
    17. Yun Jian & Connor Y. H. Wu & Julia M. Gohlke, 2017. "Effect Modification by Environmental Quality on the Association between Heatwaves and Mortality in Alabama, United States," IJERPH, MDPI, vol. 14(10), pages 1-11, September.
    18. Leila Heidari & Andrea Winquist & Mitchel Klein & Cassandra O’Lenick & Andrew Grundstein & Stefanie Ebelt Sarnat, 2016. "Susceptibility to Heat-Related Fluid and Electrolyte Imbalance Emergency Department Visits in Atlanta, Georgia, USA," IJERPH, MDPI, vol. 13(10), pages 1-17, October.
    19. Wentan Dong & Qiang Zeng & Yue Ma & Guoxing Li & Xiaochuan Pan, 2016. "Impact of Heat Wave Definitions on the Added Effect of Heat Waves on Cardiovascular Mortality in Beijing, China," IJERPH, MDPI, vol. 13(9), pages 1-12, September.
    20. Xin Dai & Qingsheng Liu & Chong Huang & He Li, 2021. "Spatiotemporal Variation Analysis of the Fine-Scale Heat Wave Risk along the Jakarta-Bandung High-Speed Railway in Indonesia," IJERPH, MDPI, vol. 18(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10108-:d:889184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.