IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3283-d1066926.html
   My bibliography  Save this article

Variations of Urban Thermal Risk with Local Climate Zones

Author

Listed:
  • Jiaxing Xin

    (Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China)

  • Jun Yang

    (Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China
    Jangho Architecture College, Northeastern University, Shenyang 110016, China)

  • Yipeng Jiang

    (School of Marine Law and Humanities, Dalian Ocean University, Dalian 116023, China)

  • Zhipeng Shi

    (Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China)

  • Cui Jin

    (Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China)

  • Xiangming Xiao

    (Department of Microbiology and Plant Biology, Center for Earth Observation and Modeling, University of Oklahoma, Norman, OK 73019, USA)

  • Jianhong (Cecilia) Xia

    (School of Earth and Planetary Sciences (EPS), Curtin University, Perth, WA 6845, Australia)

  • Ruxin Yang

    (Jangho Architecture College, Northeastern University, Shenyang 110016, China)

Abstract

Due to the differences in land cover and natural surroundings within cities, residents in various regions face different thermal risks. Therefore, this study combined multi-source data to analyze the relationship between urban heat risk and local climate zones (LCZ). We found that in downtown Shenyang, the building-type LCZ was mainly found in urban centers, while the natural- type LCZ was mainly found in suburbs. Heat risk was highest in urban centers, gradually decreasing along the suburban direction. The thermal risk indices of the building-type LCZs were significantly higher than those of the natural types. Among the building types of LCZs, LCZ 8 (open middle high-rise) had the highest average thermal risk index (0.48), followed by LCZ 3 (0.46). Among the natural types of LCZs, LCZ E (bare rock and paved) and LCZ F (bare soil and sand) had the highest thermal risk indices, reaching 0.31 and 0.29, respectively. This study evaluated the thermal risk of the Shenyang central urban area from the perspective of LCZs and combined it with high-resolution remote sensing data to provide a reference for thermal risk mitigation in future urban planning.

Suggested Citation

  • Jiaxing Xin & Jun Yang & Yipeng Jiang & Zhipeng Shi & Cui Jin & Xiangming Xiao & Jianhong (Cecilia) Xia & Ruxin Yang, 2023. "Variations of Urban Thermal Risk with Local Climate Zones," IJERPH, MDPI, vol. 20(4), pages 1-14, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3283-:d:1066926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    2. Gulrez Azhar & Shubhayu Saha & Partha Ganguly & Dileep Mavalankar & Jaime Madrigano, 2017. "Heat Wave Vulnerability Mapping for India," IJERPH, MDPI, vol. 14(4), pages 1-10, March.
    3. Hung Chak Ho & Anders Knudby & Wei Huang, 2015. "A Spatial Framework to Map Heat Health Risks at Multiple Scales," IJERPH, MDPI, vol. 12(12), pages 1-14, December.
    4. Sabrina K. Beckmann & Michael Hiete, 2020. "Predictors Associated with Health-Related Heat Risk Perception of Urban Citizens in Germany," IJERPH, MDPI, vol. 17(3), pages 1-11, January.
    5. Minxuan Zheng & Jiahua Zhang & Lamei Shi & Da Zhang & Til Prasad Pangali Sharma & Foyez Ahmed Prodhan, 2020. "Mapping Heat-Related Risks in Northern Jiangxi Province of China Based on Two Spatial Assessment Frameworks Approaches," IJERPH, MDPI, vol. 17(18), pages 1-24, September.
    6. Junzhe Bao & Xudong Li & Chuanhua Yu, 2015. "The Construction and Validation of the Heat Vulnerability Index, a Review," IJERPH, MDPI, vol. 12(7), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    2. Wei Zhang & Phil McManus & Elizabeth Duncan, 2018. "A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    3. You Jin Kwon & Dong Kun Lee & You Ha Kwon, 2020. "Is Sensible Heat Flux Useful for the Assessment of Thermal Vulnerability in Seoul (Korea)?," IJERPH, MDPI, vol. 17(3), pages 1-26, February.
    4. Hung Chak Ho & Kevin Ka-Lun Lau & Ruby Yu & Dan Wang & Jean Woo & Timothy Chi Yui Kwok & Edward Ng, 2017. "Spatial Variability of Geriatric Depression Risk in a High-Density City: A Data-Driven Socio-Environmental Vulnerability Mapping Approach," IJERPH, MDPI, vol. 14(9), pages 1-16, August.
    5. Minxuan Zheng & Jiahua Zhang & Lamei Shi & Da Zhang & Til Prasad Pangali Sharma & Foyez Ahmed Prodhan, 2020. "Mapping Heat-Related Risks in Northern Jiangxi Province of China Based on Two Spatial Assessment Frameworks Approaches," IJERPH, MDPI, vol. 17(18), pages 1-24, September.
    6. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    7. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    8. Aleš Urban & Katrin Burkart & Jan Kyselý & Christian Schuster & Eva Plavcová & Hana Hanzlíková & Petr Štěpánek & Tobia Lakes, 2016. "Spatial Patterns of Heat-Related Cardiovascular Mortality in the Czech Republic," IJERPH, MDPI, vol. 13(3), pages 1-19, March.
    9. Wei Zhang & Qianxing Zhao & Minjie Pei, 2021. "How much uncertainty does the choice of data transforming method brings to heat risk mapping? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 349-373, March.
    10. Jinling Quan, 2019. "Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification," IJERPH, MDPI, vol. 16(12), pages 1-35, June.
    11. Kijin Seong & Junfeng Jiao & Akhil Mandalapu, 2023. "Evaluating the effects of heat vulnerability on heat-related emergency medical service incidents: Lessons from Austin, Texas," Environment and Planning B, , vol. 50(3), pages 776-795, March.
    12. Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
    13. Ho, Hung Chak & Cheng, Wei & Song, Yimeng & Liu, Yuqi & Guo, Yingqi & Lu, Shiyu & Lum, Terry Yat Sang & Chiu, Rebecca & Webster, Chris, 2022. "Spatial uncertainty and environment-health association: An empirical study of osteoporosis among “old residents” in public housing estates across a hilly environment," Social Science & Medicine, Elsevier, vol. 306(C).
    14. Fadly Syah Arsad & Rozita Hod & Norfazilah Ahmad & Mazni Baharom & Fredolin Tangang, 2022. "The Malay-Version Knowledge, Risk Perception, Attitude and Practice Questionnaire on Heatwaves: Development and Construct Validation," IJERPH, MDPI, vol. 19(4), pages 1-11, February.
    15. Albert Ayorinde Abegunde, 2017. "Local communities’ belief in climate change in a rural region of Sub-Saharan Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1489-1522, August.
    16. Suresh Kumar Rathi & Soham Chakraborty & Saswat Kishore Mishra & Ambarish Dutta & Lipika Nanda, 2021. "A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Urbanites of Four Cities of India," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
    17. Michela Bonafede & Miriam Levi & Emma Pietrafesa & Alessandra Binazzi & Alessandro Marinaccio & Marco Morabito & Iole Pinto & Francesca de’ Donato & Valentina Grasso & Tiziano Costantini & Alessandro , 2022. "Workers’ Perception Heat Stress: Results from a Pilot Study Conducted in Italy during the COVID-19 Pandemic in 2020," IJERPH, MDPI, vol. 19(13), pages 1-18, July.
    18. Huan Xie & Fang Wang & Yali Gong & Xiaohua Tong & Yanmin Jin & Ang Zhao & Chao Wei & Xinyi Zhang & Shicheng Liao, 2022. "Spatially Balanced Sampling for Validation of GlobeLand30 Using Landscape Pattern-Based Inclusion Probability," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    19. Milan Trifković & Miroslav Kuburić & Žarko Nestorović & Goca Jovanović & Milan Kekanović, 2021. "The Attractiveness of Urban Complexes: Economic Aspect and Risks of Environmental Pollution," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    20. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3283-:d:1066926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.