IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v79y2015i2p939-953.html
   My bibliography  Save this article

Identification of multiple climatic extremes in metropolis: a comparison of Guangzhou and Shenzhen, China

Author

Listed:
  • Yanxu Liu
  • Shuangshuang Li
  • Yanglin Wang
  • Tian Zhang
  • Jian Peng
  • Tianyi Li

Abstract

Identifying historical trends in the integrated frequencies of various climate extremes is meaningful in climatic hazard research. However, the variation trends in regional climate extremes still need to be described by more effective indices, correlations among multiple climatic extremes and different regions need to be quantified, and the urban heat island backgrounds and thermal bioclimate conditions in which people live need to be noted. In this study, the threats of heat wave, heavy rain, strong wind, and Universal Thermal Climate Index (UTCI) stress were identified both by units of days using the 90th percentile threshold, and by an unscaled magnitude index derived from kernel density functions for Guangzhou and Shenzhen, China, in 1960–2013. The results show that both metropolises experienced an increase in heat wave threat and a decrease in strong wind threat, and the change amplitudes were higher for Guangzhou than Shenzhen. The correlation of heat wave threat between the two metropolises was significant, while the other correlations depended on the city and index. The heat wave threat was correlated with the UTCI stress in Guangzhou, while both heat wave threat and UTCI stress were correlated with strong wind threat in Shenzhen. The UTCI stress indicated that bioclimate conditions for human habitat have not deteriorated, especially in Shenzhen. In the daily-level results, the heat waves had close relationship between the two adjacent cities, and people suffered from hazard events were usually in high weighted indices of extremes. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Yanxu Liu & Shuangshuang Li & Yanglin Wang & Tian Zhang & Jian Peng & Tianyi Li, 2015. "Identification of multiple climatic extremes in metropolis: a comparison of Guangzhou and Shenzhen, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 939-953, November.
  • Handle: RePEc:spr:nathaz:v:79:y:2015:i:2:p:939-953
    DOI: 10.1007/s11069-015-1885-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1885-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1885-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Shi & Linli Cui, 2012. "Characteristics of high impact weather and meteorological disaster in Shanghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 951-969, February.
    2. Chonglan Guo & Xiaoxia Xu & Zaiwu Gong, 2014. "Co-integration analysis between GDP and meteorological catastrophic factors of Nanjing city based on the buffer operator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1091-1105, March.
    3. Stevan Savić & Aleksandar Selakov & Dragan Milošević, 2014. "Cold and warm air temperature spells during the winter and summer seasons and their impact on energy consumption in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 373-387, September.
    4. Bin Pei & Weichiang Pang & Firat Testik & Nadarajah Ravichandran & Fangqian Liu, 2014. "Mapping joint hurricane wind and surge hazards for Charleston, South Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 375-403, November.
    5. Stanley Changnon, 2011. "Windstorms in the United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 1175-1187, November.
    6. Qiang Zhang & Wei Zhang & Yongqin Chen & Tao Jiang, 2011. "Flood, drought and typhoon disasters during the last half-century in the Guangdong province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 267-278, May.
    7. Guilin Liu & Luocheng Zhang & Bin He & Xuan Jin & Qian Zhang & Bam Razafindrabe & Hailin You, 2015. "Temporal changes in extreme high temperature, heat waves and relevant disasters in Nanjing metropolitan region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1415-1430, March.
    8. Tiffany Smith & Benjamin Zaitchik & Julia Gohlke, 2013. "Heat waves in the United States: definitions, patterns and trends," Climatic Change, Springer, vol. 118(3), pages 811-825, June.
    9. Benjamin Campion & Jörg-Friedhelm Venzke, 2013. "Rainfall variability, floods and adaptations of the urban poor to flooding in Kumasi, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1895-1911, February.
    10. Naiming Xie & Jianghui Xin & Sifeng Liu, 2014. "China’s regional meteorological disaster loss analysis and evaluation based on grey cluster model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1067-1089, March.
    11. Smoyer, Karen E., 1998. "Putting risk in its place: methodological considerations for investigating extreme event health risk," Social Science & Medicine, Elsevier, vol. 47(11), pages 1809-1824, December.
    12. Aniello Amendola & Joanne Linnerooth-Bayer & Norio Okada & Peijun Shi, 2008. "Towards integrated disaster risk management: case studies and trends from Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 44(2), pages 163-168, February.
    13. Ke Wang & Lu Wang & Yi-Ming Wei & Maosheng Ye, 2013. "Beijing storm of July 21, 2012: observations and reflections," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 969-974, June.
    14. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    15. Alexander Garcia-Aristizabal & Edoardo Bucchignani & Elisa Palazzi & Donatella D’Onofrio & Paolo Gasparini & Warner Marzocchi, 2015. "Analysis of non-stationary climate-related extreme events considering climate change scenarios: an application for multi-hazard assessment in the Dar es Salaam region, Tanzania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 289-320, January.
    16. Bo Li & Steve Sain & Linda Mearns & Henry Anderson & Sari Kovats & Kristie Ebi & Marni Bekkedal & Marty Kanarek & Jonathan Patz, 2012. "The impact of extreme heat on morbidity in Milwaukee, Wisconsin," Climatic Change, Springer, vol. 110(3), pages 959-976, February.
    17. Guizhi Wang & Xia Li & Xianhua Wu & Jun Yu, 2015. "The rainstorm comprehensive economic loss assessment based on CGE model: using a July heavy rainstorm in Beijing as an example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 839-854, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwen Wang & Wen Zhou & Edward Yan Yung Ng & Yong Xu, 2016. "Urban heat islands in Hong Kong: statistical modeling and trend detection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 885-907, September.
    2. Jiansheng Wu & Si Li & Nan Shen & Yuhao Zhao & Hongyi Cui, 2020. "Construction of Cooling Corridors with Multiscenarios on Urban Scale: A Case Study of Shenzhen," Sustainability, MDPI, vol. 12(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.
    2. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    3. Chuan-Yao Lin & Yi-Yun Chien & Chiung-Jui Su & Mien-Tze Kueh & Shih-Chun Lung, 2017. "Climate variability of heat wave and projection of warming scenario in Taiwan," Climatic Change, Springer, vol. 145(3), pages 305-320, December.
    4. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    5. Rongrong Xu & Yongxiang Wu & Ming Chen & Xuan Zhang & Wei Wu & Long Tan & Gaoxu Wang & Yi Xu & Bing Yan & Yuedong Xia, 2019. "Calculation of the contribution rate of China’s hydraulic science and technology based on a feedforward neural network," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    6. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    7. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    8. Jithitikulchai, Theepakorn, 2023. "The effect of climate change and agricultural diversification on the total value of agricultural output of farm households in Sub-Saharan Africa," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 18(2), October.
    9. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    10. Ying Xu & Christopher Findlay, 2019. "Farmers’ constraints, governmental support and climate change adaptation: evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 866-880, October.
    11. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    12. Flückiger, Matthias & Ludwig, Markus, 2022. "Temperature and risk of diarrhoea among children in Sub-Saharan Africa," World Development, Elsevier, vol. 160(C).
    13. Susan Williams & Peng Bi & Jonathan Newbury & Guy Robinson & Dino Pisaniello & Arthur Saniotis & Alana Hansen, 2013. "Extreme Heat and Health: Perspectives from Health Service Providers in Rural and Remote Communities in South Australia," IJERPH, MDPI, vol. 10(11), pages 1-19, October.
    14. Nicholas A. Mailloux & Colleen P. Henegan & Dorothy Lsoto & Kristen P. Patterson & Paul C. West & Jonathan A. Foley & Jonathan A. Patz, 2021. "Climate Solutions Double as Health Interventions," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    15. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    16. Shinji Otani & Satomi Funaki Ishizu & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2021. "The Effect of Minimum and Maximum Air Temperatures in the Summer on Heat Stroke in Japan: A Time-Stratified Case-Crossover Study," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    17. Yanyu Zhang & Shuying Zang & Xiangjin Shen & Gaohua Fan, 2021. "Observed Changes of Rain-Season Precipitation in China from 1960 to 2018," IJERPH, MDPI, vol. 18(19), pages 1-16, September.
    18. Neha Sinha, 2012. "Climate Change Issues and Global Negotiations," Insight on Africa, , vol. 4(1), pages 35-57, January.
    19. Zhihui Liu & Yongna Meng & Hao Xiang & Yuanan Lu & Suyang Liu, 2020. "Association of Short-Term Exposure to Meteorological Factors and Risk of Hand, Foot, and Mouth Disease: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    20. Yuanshu Jing & Jian Li & Yongyuan Weng & Jing Wang, 2014. "The assessment of drought relief by typhoon Saomai based on MODIS remote sensing data in Shanghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1215-1225, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:79:y:2015:i:2:p:939-953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.