IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v449y2021ics030438002100123x.html
   My bibliography  Save this article

Modeling lives saved from extreme heat by urban tree cover✰

Author

Listed:
  • Sinha, Paramita
  • Coville, Robert C.
  • Hirabayashi, Satoshi
  • Lim, Brian
  • Endreny, Theodore A.
  • Nowak, David J.

Abstract

Urban tree cover contributes to human well-being through a variety of ecosystem services. In this study, we focus on the role that trees can play in reducing temperature during warm seasons and associated impacts on human health and well-being. We introduce a method for quantifying and valuing changes in premature mortality from extreme heat due to the changes in urban tree cover and apply this method to Baltimore City, Maryland. The model i-Tree Cool Air uses a water and energy balance to estimate hourly changes in air temperature due to alternative scenarios of tree cover applied across 653 Census Block Groups. The changes in temperature are applied to existing temperature–mortality models to estimate changes in health outcomes and associated values. Existing tree cover in Baltimore is estimated to reduce annual mortality by 543 deaths as compared to a 0% tree cover scenario. Increasing the area of current tree cover by 10% of each Census Block Group reduced baseline annual mortality by 83 to 247 deaths (valued at $0.68 –2.0 billion applying Value of Statistical Life estimates). Over half of the reduced mortality is from the over 65 year age group, who are among the most vulnerable to extreme heat. Reductions in air temperature due to increased tree cover were greatest in downtown Baltimore where tree cover is relatively low and impervious cover is relatively high. However, the greatest reductions in mortality occurred in the outskirts of Baltimore where a greater number of people who are over 65 years in age reside. Quantifying and valuing the health benefits of changes in air temperatures due to increased tree cover can inform climate adaptation and mitigation plans by decision makers. Developing adaptation strategies to effectively address these issues will become increasingly important in the future under changing climates and an aging population.

Suggested Citation

  • Sinha, Paramita & Coville, Robert C. & Hirabayashi, Satoshi & Lim, Brian & Endreny, Theodore A. & Nowak, David J., 2021. "Modeling lives saved from extreme heat by urban tree cover✰," Ecological Modelling, Elsevier, vol. 449(C).
  • Handle: RePEc:eee:ecomod:v:449:y:2021:i:c:s030438002100123x
    DOI: 10.1016/j.ecolmodel.2021.109553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002100123X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laurence Kalkstein & Scott Greene & David Mills & Jason Samenow, 2011. "An evaluation of the progress in reducing heat-related human mortality in major U.S. cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(1), pages 113-129, January.
    2. Sinha, Paramita & Caulkins, Martha L. & Cropper, Maureen L., 2018. "Household location decisions and the value of climate amenities," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 608-637.
    3. Kaiser, R. & Le Tertre, A. & Schwartz, J. & Gotway, C.A. & Daley, W.R. & Rubin, C.H., 2007. "The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality," American Journal of Public Health, American Public Health Association, vol. 97(S1), pages 158-162.
    4. Gómez-Baggethun, Erik & Barton, David N., 2013. "Classifying and valuing ecosystem services for urban planning," Ecological Economics, Elsevier, vol. 86(C), pages 235-245.
    5. Bolund, Per & Hunhammar, Sven, 1999. "Ecosystem services in urban areas," Ecological Economics, Elsevier, vol. 29(2), pages 293-301, May.
    6. Tiffany Smith & Benjamin Zaitchik & Julia Gohlke, 2013. "Heat waves in the United States: definitions, patterns and trends," Climatic Change, Springer, vol. 118(3), pages 811-825, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Semenzato & Lucia Bortolini, 2023. "Urban Heat Island Mitigation and Urban Green Spaces: Testing a Model in the City of Padova (Italy)," Land, MDPI, vol. 12(2), pages 1-13, February.
    2. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    2. Massoni, Emma Soy & Barton, David N. & Rusch, Graciela M. & Gundersen, Vegard, 2018. "Bigger, more diverse and better? Mapping structural diversity and its recreational value in urban green spaces," Ecosystem Services, Elsevier, vol. 31(PC), pages 502-516.
    3. Jeroen Degerickx & Martin Hermy & Ben Somers, 2020. "Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data," Sustainability, MDPI, vol. 12(5), pages 1-35, March.
    4. Jonas Smit Andersen & Sara Maria Lerer & Antje Backhaus & Marina Bergen Jensen & Hjalte Jomo Danielsen Sørup, 2017. "Characteristic Rain Events: A Methodology for Improving the Amenity Value of Stormwater Control Measures," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    5. Holt, Alison R. & Mears, Meghann & Maltby, Lorraine & Warren, Philip, 2015. "Understanding spatial patterns in the production of multiple urban ecosystem services," Ecosystem Services, Elsevier, vol. 16(C), pages 33-46.
    6. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    7. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    8. Renato Monteiro & José C. Ferreira & Paula Antunes, 2020. "Green Infrastructure Planning Principles: An Integrated Literature Review," Land, MDPI, vol. 9(12), pages 1-19, December.
    9. Kathryn Rodgman, Mary & Anguelovski, Isabelle & Pérez-del-Pulgar, Carmen & Shokry, Galia & Garcia-Lamarca, Melissa & Connolly, James J.T. & Baró, Francesc & Triguero-Mas, Margarita, 2024. "Perceived urban ecosystem services and disservices in gentrifying neighborhoods: Contrasting views between community members and state informants," Ecosystem Services, Elsevier, vol. 65(C).
    10. Schetke, Sophie & Lee, Heera & Graf, Wanda & Lautenbach, Sven, 2018. "Application of the ecosystem service concept for climate protection in Germany," Ecosystem Services, Elsevier, vol. 29(PB), pages 294-305.
    11. Mörtberg, Ulla & Goldenberg, Romain & Kalantari, Zahra & Kordas, Olga & Deal, Brian & Balfors, Berit & Cvetkovic, Vladimir, 2017. "Integrating ecosystem services in the assessment of urban energy trajectories – A study of the Stockholm Region," Energy Policy, Elsevier, vol. 100(C), pages 338-349.
    12. Iwona Szumacher & Piotr Pabjanek, 2017. "Temporal Changes in Ecosystem Services in European Cities in the Continental Biogeographical Region in the Period from 1990–2012," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
    13. Suchocka, Marzena & Heciak, Jakub & Błaszczyk, Magdalena & Adamczyk, Joanna & Gaworski, Marek & Gawłowska, Agnieszka & Mojski, Jacek & Kalaji, Hazem M. & Kais, Karolina & Kosno-Jończy, Joanna & Hec, 2023. "Comparison of Ecosystem Services and Replacement Value calculations performed for urban trees," Ecosystem Services, Elsevier, vol. 63(C).
    14. Alessandra La Notte, 2018. "Accounting for the ecosystem services generated by Nature-based Solutions to measure urban resilience. A methodological proposal," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 43-61.
    15. Kim, Jinhee & de Leeuw, Evelyne & Harris-Roxas, Ben & Sainsbury, Peter, 2023. "Five urban health research traditions: A meta-narrative review," Social Science & Medicine, Elsevier, vol. 336(C).
    16. Wilkerson, Marit L. & Mitchell, Matthew G.E. & Shanahan, Danielle & Wilson, Kerrie A. & Ives, Christopher D. & Lovelock, Catherine E. & Rhodes, Jonathan R., 2018. "The role of socio-economic factors in planning and managing urban ecosystem services," Ecosystem Services, Elsevier, vol. 31(PA), pages 102-110.
    17. Giulia Capotorti & Barbara Mollo & Laura Zavattero & Ilaria Anzellotti & Laura Celesti-Grapow, 2015. "Setting Priorities for Urban Forest Planning. A Comprehensive Response to Ecological and Social Needs for the Metropolitan Area of Rome (Italy)," Sustainability, MDPI, vol. 7(4), pages 1-19, April.
    18. Zahra Kalantari & Sara Khoshkar & Helena Falk & Vladimir Cvetkovic & Ulla Mörtberg, 2017. "Accessibility of Water-Related Cultural Ecosystem Services through Public Transport—A Model for Planning Support in the Stockholm Region," Sustainability, MDPI, vol. 9(3), pages 1-16, February.
    19. Qilong Shao & Li Peng & Yichan Liu & Yongchang Li, 2023. "A Bibliometric Analysis of Urban Ecosystem Services: Structure, Evolution, and Prospects," Land, MDPI, vol. 12(2), pages 1-23, January.
    20. Patrycia Brzoska & Aiga Spāģe, 2020. "From City- to Site-Dimension: Assessing the Urban Ecosystem Services of Different Types of Green Infrastructure," Land, MDPI, vol. 9(5), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:449:y:2021:i:c:s030438002100123x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.