IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i18p9811-d637754.html
   My bibliography  Save this article

Using Low-Cost Sensors to Assess Fine Particulate Matter Infiltration (PM 2.5 ) during a Wildfire Smoke Episode at a Large Inpatient Healthcare Facility

Author

Listed:
  • Phuong D. M. Nguyen

    (Environmental Health Services, BC Center for Disease Control, Vancouver, BC V5Z 4R4, Canada)

  • Nika Martinussen

    (Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada)

  • Gary Mallach

    (Air Health Sciences Division, Health Canada, Ottawa, ON K1A 0K9, Canada)

  • Ghazal Ebrahimi

    (Provincial Health Services Authority, Vancouver, BC V6H 4C1, Canada)

  • Kori Jones

    (Vancouver Coastal Health, Vancouver, BC V5Z 1A1, Canada)

  • Naomi Zimmerman

    (Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada)

  • Sarah B. Henderson

    (Environmental Health Services, BC Center for Disease Control, Vancouver, BC V5Z 4R4, Canada
    School of Population and Public Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada)

Abstract

Wildfire smoke exposure is associated with a range of acute health outcomes, which can be more severe in individuals with underlying health conditions. Currently, there is limited information on the susceptibility of healthcare facilities to smoke infiltration. As part of a larger study to address this gap, a rehabilitation facility in Vancouver, Canada was outfitted with one outdoor and seven indoor low-cost fine particulate matter (PM 2.5 ) sensors in Air Quality Eggs (EGG) during the summer of 2020. Raw measurements were calibrated using temperature, relative humidity, and dew point derived from the EGG data. The infiltration coefficient was quantified using a distributed lag model. Indoor concentrations during the smoke episode were elevated throughout the building, though non-uniformly. After censoring indoor-only peaks, the average infiltration coefficient (range) during typical days was 0.32 (0.22–0.39), compared with 0.37 (0.31–0.47) during the smoke episode, a 19% increase on average. Indoor PM 2.5 concentrations quickly reflected outdoor conditions during and after the smoke episode. It is unclear whether these results will be generalizable to other years due to COVID-related changes to building operations, but some of the safety protocols may offer valuable lessons for future wildfire seasons. For example, points of building entry and exit were reduced from eight to two during the pandemic, which likely helped to protect the building from wildfire smoke infiltration. Overall, these results demonstrate the utility of indoor low-cost sensors in understanding the impacts of extreme smoke events on facilities where highly susceptible individuals are present. Furthermore, they highlight the need to employ interventions that enhance indoor air quality in such facilities during smoke events.

Suggested Citation

  • Phuong D. M. Nguyen & Nika Martinussen & Gary Mallach & Ghazal Ebrahimi & Kori Jones & Naomi Zimmerman & Sarah B. Henderson, 2021. "Using Low-Cost Sensors to Assess Fine Particulate Matter Infiltration (PM 2.5 ) during a Wildfire Smoke Episode at a Large Inpatient Healthcare Facility," IJERPH, MDPI, vol. 18(18), pages 1-17, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9811-:d:637754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/18/9811/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/18/9811/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gasparrini, Antonio, 2011. "Distributed Lag Linear and Non-Linear Models in R: The Package dlnm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i08).
    2. Amanda J. Wheeler & Ryan W. Allen & Kerryn Lawrence & Christopher T. Roulston & Jennifer Powell & Grant J. Williamson & Penelope J. Jones & Fabienne Reisen & Geoffrey G. Morgan & Fay H. Johnston, 2021. "Can Public Spaces Effectively Be Used as Cleaner Indoor Air Shelters during Extreme Smoke Events?," IJERPH, MDPI, vol. 18(8), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyunsik Kim & Sungho Tae & Pengfei Zheng & Geonuk Kang & Hanseung Lee, 2021. "Development of IoT-Based Particulate Matter Monitoring System for Construction Sites," IJERPH, MDPI, vol. 18(21), pages 1-15, November.
    2. Chris G. Buse & Aita Bezzola & Jordan Brubacher & Tim K. Takaro & Arthur L. Fredeen & Margot W. Parkes, 2022. "Cumulative Impacts of Diverse Land Uses in British Columbia, Canada: Application of the “EnviroScreen” Method," IJERPH, MDPI, vol. 19(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martina S. Ragettli & Apolline Saucy & Benjamin Flückiger & Danielle Vienneau & Kees de Hoogh & Ana M. Vicedo-Cabrera & Christian Schindler & Martin Röösli, 2023. "Explorative Assessment of the Temperature–Mortality Association to Support Health-Based Heat-Warning Thresholds: A National Case-Crossover Study in Switzerland," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    2. Yunquan Zhang & Chuanhua Yu & Jin Yang & Lan Zhang & Fangfang Cui, 2017. "Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China," IJERPH, MDPI, vol. 14(8), pages 1-11, August.
    3. Iara da Silva & Caroline Fernanda Hei Wikuats & Elizabeth Mie Hashimoto & Leila Droprinchinski Martins, 2022. "Effects of Environmental and Socioeconomic Inequalities on Health Outcomes: A Multi-Region Time-Series Study," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    4. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    5. Kai Luo & Wenjing Li & Ruiming Zhang & Runkui Li & Qun Xu & Yang Cao, 2016. "Ambient Fine Particulate Matter Exposure and Risk of Cardiovascular Mortality: Adjustment of the Meteorological Factors," IJERPH, MDPI, vol. 13(11), pages 1-17, November.
    6. Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
    7. Yunfei Cheng & Tatiana Ermolieva & Gui-Ying Cao & Xiaoying Zheng, 2018. "Health Impacts of Exposure to Gaseous Pollutants and Particulate Matter in Beijing—A Non-Linear Analysis Based on the New Evidence," IJERPH, MDPI, vol. 15(9), pages 1-12, September.
    8. Malebo Sephule Makunyane & Hannes Rautenbach & Neville Sweijd & Joel Botai & Janine Wichmann, 2023. "Health Risks of Temperature Variability on Hospital Admissions in Cape Town, 2011–2016," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    9. Lee, Won Sang & Sohn, So Young, 2018. "Effects of standardization on the evolution of information and communications technology," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 308-317.
    10. Bonnie R. Joubert & Marianthi-Anna Kioumourtzoglou & Toccara Chamberlain & Hua Yun Chen & Chris Gennings & Mary E. Turyk & Marie Lynn Miranda & Thomas F. Webster & Katherine B. Ensor & David B. Dunson, 2022. "Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods," IJERPH, MDPI, vol. 19(3), pages 1-24, January.
    11. Yao Xiao & Chengzhen Meng & Suli Huang & Yanran Duan & Gang Liu & Shuyuan Yu & Ji Peng & Jinquan Cheng & Ping Yin, 2021. "Short-Term Effect of Temperature Change on Non-Accidental Mortality in Shenzhen, China," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
    12. Xerxes T. Seposo & Tran Ngoc Dang & Yasushi Honda, 2015. "Evaluating the Effects of Temperature on Mortality in Manila City (Philippines) from 2006–2010 Using a Distributed Lag Nonlinear Model," IJERPH, MDPI, vol. 12(6), pages 1-16, June.
    13. Elisaveta P. Petkova & Radley M. Horton & Daniel A. Bader & Patrick L. Kinney, 2013. "Projected Heat-Related Mortality in the U.S. Urban Northeast," IJERPH, MDPI, vol. 10(12), pages 1-14, December.
    14. Mieczysław Szyszkowicz, 2022. "Concentration–Response Functions as an Essence of the Results from Lags," IJERPH, MDPI, vol. 19(13), pages 1-11, July.
    15. Lu Wang, 2023. "Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China," IJERPH, MDPI, vol. 20(3), pages 1-17, February.
    16. Theophilus I. Emeto & Oyelola A. Adegboye & Reza A. Rumi & Mahboob-Ul I. Khan & Majeed Adegboye & Wasif A. Khan & Mahmudur Rahman & Peter K. Streatfield & Kazi M. Rahman, 2020. "Disparities in Risks of Malaria Associated with Climatic Variability among Women, Children and Elderly in the Chittagong Hill Tracts of Bangladesh," IJERPH, MDPI, vol. 17(24), pages 1-15, December.
    17. Xuemei Su & Yibin Cheng & Yu Wang & Yue Liu & Na Li & Yonghong Li & Xiaoyuan Yao, 2019. "Regional Temperature-Sensitive Diseases and Attributable Fractions in China," IJERPH, MDPI, vol. 17(1), pages 1-15, December.
    18. Temitope Christina Adebayo-Ojo & Janine Wichmann & Oluwaseyi Olalekan Arowosegbe & Nicole Probst-Hensch & Christian Schindler & Nino Künzli, 2022. "Short-Term Effects of PM 10 , NO 2 , SO 2 and O 3 on Cardio-Respiratory Mortality in Cape Town, South Africa, 2006–2015," IJERPH, MDPI, vol. 19(13), pages 1-20, June.
    19. Christofer Åström & Kristie L. Ebi & Joakim Langner & Bertil Forsberg, 2014. "Developing a Heatwave Early Warning System for Sweden: Evaluating Sensitivity of Different Epidemiological Modelling Approaches to Forecast Temperatures," IJERPH, MDPI, vol. 12(1), pages 1-14, December.
    20. Yannan Li & Blesson Mathew Varghese & Jingwen Liu & Peng Bi & Michael Tong, 2023. "Association between High Ambient Temperatures and Road Crashes in an Australian City with Temperate Climate: A Time-Series Study, 2012–2021," IJERPH, MDPI, vol. 20(11), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9811-:d:637754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.