IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v22y2017i4d10.1007_s13253-017-0287-4.html
   My bibliography  Save this article

A New Approach to Modelling the Relationship Between Annual Population Abundance Indices and Weather Data

Author

Listed:
  • D. A. Elston

    (Biomathematics and Statistics Scotland)

  • M. J. Brewer

    (Biomathematics and Statistics Scotland)

  • B. Martay

    (British Trust for Ornithology)

  • A. Johnston

    (British Trust for Ornithology)

  • P. A. Henrys

    (Centre for Ecology and Hydrology)

  • J. R. Bell

    (Rothamsted Research)

  • R. Harrington

    (Rothamsted Research)

  • D. Monteith

    (Centre for Ecology and Hydrology)

  • T. M. Brereton

    (Butterfly Conservation)

  • K. L. Boughey

    (Bat Conservation Trust)

  • J. W. Pearce-Higgins

    (British Trust for Ornithology)

Abstract

Weather has often been associated with fluctuations in population sizes of species; however, it can be difficult to estimate the effects satisfactorily because population size is naturally measured by annual abundance indices whilst weather varies on much shorter timescales. We describe a novel method for estimating the effects of a temporal sequence of a weather variable (such as mean temperatures from successive months) on annual species abundance indices. The model we use has a separate regression coefficient for each covariate in the temporal sequence, and over-fitting is avoided by constraining the regression coefficients to lie on a curve defined by a small number of parameters. The constrained curve is the product of a periodic function, reflecting assumptions that associations with weather will vary smoothly throughout the year and tend to be repetitive across years, and an exponentially decaying term, reflecting an assumption that the weather from the most recent year will tend to have the greatest effect on the current population and that the effect of weather in previous years tends to diminish as the time lag increases. We have used this approach to model 501 species abundance indices from Great Britain and present detailed results for two contrasting species alongside an overall impression of the results across all species. We believe this approach provides an important advance to the challenge of robustly modelling relationships between weather and species population size. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • D. A. Elston & M. J. Brewer & B. Martay & A. Johnston & P. A. Henrys & J. R. Bell & R. Harrington & D. Monteith & T. M. Brereton & K. L. Boughey & J. W. Pearce-Higgins, 2017. "A New Approach to Modelling the Relationship Between Annual Population Abundance Indices and Weather Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 427-445, December.
  • Handle: RePEc:spr:jagbes:v:22:y:2017:i:4:d:10.1007_s13253-017-0287-4
    DOI: 10.1007/s13253-017-0287-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-017-0287-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-017-0287-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John F. Y. Brookfield, 2001. "Predicting the future," Nature, Nature, vol. 411(6841), pages 999-999, June.
    2. Gasparrini, Antonio, 2011. "Distributed Lag Linear and Non-Linear Models in R: The Package dlnm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i08).
    3. R. Warren & J. VanDerWal & J. Price & J. A. Welbergen & I. Atkinson & J. Ramirez-Villegas & T. J. Osborn & A. Jarvis & L. P. Shoo & S. E. Williams & J. Lowe, 2013. "Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss," Nature Climate Change, Nature, vol. 3(7), pages 678-682, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunquan Zhang & Chuanhua Yu & Jin Yang & Lan Zhang & Fangfang Cui, 2017. "Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China," IJERPH, MDPI, vol. 14(8), pages 1-11, August.
    2. Adams, Leen & Faseur, Tineke & Geuens, Maggie, 2010. "The Influence of the Self-Regulatory Focus on the Effectiveness of Stop-Smoking Campaigns for Young Smokers," Working Papers 2010/38, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    3. Kai Luo & Wenjing Li & Ruiming Zhang & Runkui Li & Qun Xu & Yang Cao, 2016. "Ambient Fine Particulate Matter Exposure and Risk of Cardiovascular Mortality: Adjustment of the Meteorological Factors," IJERPH, MDPI, vol. 13(11), pages 1-17, November.
    4. Yunfei Cheng & Tatiana Ermolieva & Gui-Ying Cao & Xiaoying Zheng, 2018. "Health Impacts of Exposure to Gaseous Pollutants and Particulate Matter in Beijing—A Non-Linear Analysis Based on the New Evidence," IJERPH, MDPI, vol. 15(9), pages 1-12, September.
    5. Xerxes T. Seposo & Tran Ngoc Dang & Yasushi Honda, 2015. "Evaluating the Effects of Temperature on Mortality in Manila City (Philippines) from 2006–2010 Using a Distributed Lag Nonlinear Model," IJERPH, MDPI, vol. 12(6), pages 1-16, June.
    6. Vedrenne, Michel & Pérez, Javier & Lumbreras, Julio & Rodríguez, María Encarnación, 2014. "Life cycle assessment as a policy-support tool: The case of taxis in the city of Madrid," Energy Policy, Elsevier, vol. 66(C), pages 185-197.
    7. Theophilus I. Emeto & Oyelola A. Adegboye & Reza A. Rumi & Mahboob-Ul I. Khan & Majeed Adegboye & Wasif A. Khan & Mahmudur Rahman & Peter K. Streatfield & Kazi M. Rahman, 2020. "Disparities in Risks of Malaria Associated with Climatic Variability among Women, Children and Elderly in the Chittagong Hill Tracts of Bangladesh," IJERPH, MDPI, vol. 17(24), pages 1-15, December.
    8. Paolo Angelini, 2008. "Liquidity And Announcement Effects In The Euro Area," Giornale degli Economisti, GDE (Giornale degli Economisti e Annali di Economia), Bocconi University, vol. 67(1), pages 1-20, March.
    9. Xuemei Su & Yibin Cheng & Yu Wang & Yue Liu & Na Li & Yonghong Li & Xiaoyuan Yao, 2019. "Regional Temperature-Sensitive Diseases and Attributable Fractions in China," IJERPH, MDPI, vol. 17(1), pages 1-15, December.
    10. Lu, Fangfang & Xu, Daolin & Wen, Guilin, 2005. "Tracing initial conditions, historical evolutionary path and parameters of chaotic processes from a short segment of scalar time series," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 265-271.
    11. Yannan Li & Blesson Mathew Varghese & Jingwen Liu & Peng Bi & Michael Tong, 2023. "Association between High Ambient Temperatures and Road Crashes in an Australian City with Temperate Climate: A Time-Series Study, 2012–2021," IJERPH, MDPI, vol. 20(11), pages 1-13, May.
    12. Nitschke, Craig R. & Innes, John L., 2008. "A tree and climate assessment tool for modelling ecosystem response to climate change," Ecological Modelling, Elsevier, vol. 210(3), pages 263-277.
    13. Reija Ruuhela & Otto Hyvärinen & Kirsti Jylhä, 2018. "Regional Assessment of Temperature-Related Mortality in Finland," IJERPH, MDPI, vol. 15(3), pages 1-13, February.
    14. Jiangtao Liu & Yueling Ma & Yuhong Wang & Sheng Li & Shuyu Liu & Xiaotao He & Lanyu Li & Lei Guo & Jingping Niu & Bin Luo & Kai Zhang, 2019. "The Impact of Cold and Heat on Years of Life Lost in a Northwestern Chinese City with Temperate Continental Climate," IJERPH, MDPI, vol. 16(19), pages 1-13, September.
    15. Beaumont, Linda J. & Graham, Erin & Duursma, Daisy Englert & Wilson, Peter D. & Cabrelli, Abigail & Baumgartner, John B. & Hallgren, Willow & Esperón-Rodríguez, Manuel & Nipperess, David A. & Warren, , 2016. "Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?," Ecological Modelling, Elsevier, vol. 342(C), pages 135-146.
    16. Kenneth White & Kimberly Watkins & Megan McCoy & Bertranna Muruthi & Jamie Lynn Byram, 2021. "How Financial Socialization Messages Relate to Financial Management, Optimism and Stress: Variations by Race," Journal of Family and Economic Issues, Springer, vol. 42(2), pages 237-250, June.
    17. Angelo G. Solimini & Matteo Renzi, 2017. "Association between Air Pollution and Emergency Room Visits for Atrial Fibrillation," IJERPH, MDPI, vol. 14(6), pages 1-10, June.
    18. Vishnevskiy, Konstantin & Karasev, Oleg & Meissner, Dirk, 2015. "Integrated roadmaps and corporate foresight as tools of innovation management: The case of Russian companies," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 433-443.
    19. George Leckie & Harvey Goldstein, 2009. "The limitations of using school league tables to inform school choice," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(4), pages 835-851, October.
    20. Vanderfaeillie, Johan & Van Holen, Frank & Vanschoonlandt, Femke & Robberechts, Marijke & Stroobants, Tim, 2013. "Children placed in long-term family foster care: A longitudinal study into the development of problem behavior and associated factors," Children and Youth Services Review, Elsevier, vol. 35(4), pages 587-593.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:22:y:2017:i:4:d:10.1007_s13253-017-0287-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.