IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i3p406-d133612.html
   My bibliography  Save this article

Regional Assessment of Temperature-Related Mortality in Finland

Author

Listed:
  • Reija Ruuhela

    (Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland)

  • Otto Hyvärinen

    (Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland)

  • Kirsti Jylhä

    (Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland)

Abstract

The aim of this study was to assess regional differences in temperature–mortality relationships across 21 hospital districts in Finland. The temperature dependence of the daily number of all-cause, all-aged deaths during 2000–2014 was studied in each hospital district by using daily mean temperatures, spatially averaged across each hospital district, to describe exposure to heat stress and cold stress. The relationships were modelled using distributed lag non-linear models (DLNM). In a simple model version, no delayed impacts of heat and cold on mortality were taken into account, whereas a more complex version included delayed impacts up to 25 days. A meta-analysis with selected climatic and sociodemographic covariates was conducted to study differences in the relationships between hospital districts. A pooled mortality-temperature relationship was produced to describe the average relationship in Finland. The simple DLNM model version without lag gave U-shaped dependencies of mortality on temperature almost without exception. The outputs of the model version with a 25-day lag were also U-shaped in most hospital districts. According to the meta-analysis, the differences in the temperature-mortality relationships between hospital districts were not statistically significant on the absolute temperature scale, meaning that the pooled mortality–temperature relationship can be applied to the whole country. However, on a relative temperature scale, heterogeneity was found, and the meta-regression suggested that morbidity index and population in the hospital districts might explain some of this heterogeneity. The pooled estimate for the relative risk (RR) of mortality at a daily mean temperature of 24 °C was 1.16 (95% CI 1.12–1.20) with reference at 14 °C, which is the minimum mortality temperature (MMT) of the pooled relationship. On the cold side, the RR at a daily mean temperature of −20 °C was 1.14 (95% CI 1.12–1.16). On a relative scale of daily mean temperature, the MMT was found at the 79th percentile.

Suggested Citation

  • Reija Ruuhela & Otto Hyvärinen & Kirsti Jylhä, 2018. "Regional Assessment of Temperature-Related Mortality in Finland," IJERPH, MDPI, vol. 15(3), pages 1-13, February.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:406-:d:133612
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/3/406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/3/406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gasparrini, Antonio, 2011. "Distributed Lag Linear and Non-Linear Models in R: The Package dlnm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i08).
    2. Francesca K. De’ Donato & Michela Leone & Matteo Scortichini & Manuela De Sario & Klea Katsouyanni & Timo Lanki & Xavier Basagaña & Ferran Ballester & Christofer Åström & Anna Paldy & Mathilde Pascal , 2015. "Changes in the Effect of Heat on Mortality in the Last 20 Years in Nine European Cities. Results from the PHASE Project," IJERPH, MDPI, vol. 12(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Misun Kang & Kyu Rang Kim & Ju-Young Shin, 2020. "Event-Based Heat-Related Risk Assessment Model for South Korea Using Maximum Perceived Temperature, Wet-Bulb Globe Temperature, and Air Temperature Data," IJERPH, MDPI, vol. 17(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joris Adriaan Frank Van Loenhout & Jose Manuel Rodriguez-Llanes & Debarati Guha-Sapir, 2016. "Stakeholders’ Perception on National Heatwave Plans and Their Local Implementation in Belgium and The Netherlands," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    2. Martina S. Ragettli & Apolline Saucy & Benjamin Flückiger & Danielle Vienneau & Kees de Hoogh & Ana M. Vicedo-Cabrera & Christian Schindler & Martin Röösli, 2023. "Explorative Assessment of the Temperature–Mortality Association to Support Health-Based Heat-Warning Thresholds: A National Case-Crossover Study in Switzerland," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    3. Yunquan Zhang & Chuanhua Yu & Jin Yang & Lan Zhang & Fangfang Cui, 2017. "Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China," IJERPH, MDPI, vol. 14(8), pages 1-11, August.
    4. Mare Lõhmus, 2018. "Possible Biological Mechanisms Linking Mental Health and Heat—A Contemplative Review," IJERPH, MDPI, vol. 15(7), pages 1-21, July.
    5. Iara da Silva & Caroline Fernanda Hei Wikuats & Elizabeth Mie Hashimoto & Leila Droprinchinski Martins, 2022. "Effects of Environmental and Socioeconomic Inequalities on Health Outcomes: A Multi-Region Time-Series Study," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    6. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    7. Kai Luo & Wenjing Li & Ruiming Zhang & Runkui Li & Qun Xu & Yang Cao, 2016. "Ambient Fine Particulate Matter Exposure and Risk of Cardiovascular Mortality: Adjustment of the Meteorological Factors," IJERPH, MDPI, vol. 13(11), pages 1-17, November.
    8. Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
    9. Matteo Scortichini & Manuela De Sario & Francesca K. De’Donato & Marina Davoli & Paola Michelozzi & Massimo Stafoggia, 2018. "Short-Term Effects of Heat on Mortality and Effect Modification by Air Pollution in 25 Italian Cities," IJERPH, MDPI, vol. 15(8), pages 1-12, August.
    10. Yunfei Cheng & Tatiana Ermolieva & Gui-Ying Cao & Xiaoying Zheng, 2018. "Health Impacts of Exposure to Gaseous Pollutants and Particulate Matter in Beijing—A Non-Linear Analysis Based on the New Evidence," IJERPH, MDPI, vol. 15(9), pages 1-12, September.
    11. Malebo Sephule Makunyane & Hannes Rautenbach & Neville Sweijd & Joel Botai & Janine Wichmann, 2023. "Health Risks of Temperature Variability on Hospital Admissions in Cape Town, 2011–2016," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    12. Lee, Won Sang & Sohn, So Young, 2018. "Effects of standardization on the evolution of information and communications technology," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 308-317.
    13. Fariha Hasan & Shayan Marsia & Kajal Patel & Priyanka Agrawal & Junaid Abdul Razzak, 2021. "Effective Community-Based Interventions for the Prevention and Management of Heat-Related Illnesses: A Scoping Review," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
    14. Bonnie R. Joubert & Marianthi-Anna Kioumourtzoglou & Toccara Chamberlain & Hua Yun Chen & Chris Gennings & Mary E. Turyk & Marie Lynn Miranda & Thomas F. Webster & Katherine B. Ensor & David B. Dunson, 2022. "Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods," IJERPH, MDPI, vol. 19(3), pages 1-24, January.
    15. Yao Xiao & Chengzhen Meng & Suli Huang & Yanran Duan & Gang Liu & Shuyuan Yu & Ji Peng & Jinquan Cheng & Ping Yin, 2021. "Short-Term Effect of Temperature Change on Non-Accidental Mortality in Shenzhen, China," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
    16. Xerxes T. Seposo & Tran Ngoc Dang & Yasushi Honda, 2015. "Evaluating the Effects of Temperature on Mortality in Manila City (Philippines) from 2006–2010 Using a Distributed Lag Nonlinear Model," IJERPH, MDPI, vol. 12(6), pages 1-16, June.
    17. Elisaveta P. Petkova & Radley M. Horton & Daniel A. Bader & Patrick L. Kinney, 2013. "Projected Heat-Related Mortality in the U.S. Urban Northeast," IJERPH, MDPI, vol. 10(12), pages 1-14, December.
    18. Mieczysław Szyszkowicz, 2022. "Concentration–Response Functions as an Essence of the Results from Lags," IJERPH, MDPI, vol. 19(13), pages 1-11, July.
    19. Lu Wang, 2023. "Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China," IJERPH, MDPI, vol. 20(3), pages 1-17, February.
    20. Theophilus I. Emeto & Oyelola A. Adegboye & Reza A. Rumi & Mahboob-Ul I. Khan & Majeed Adegboye & Wasif A. Khan & Mahmudur Rahman & Peter K. Streatfield & Kazi M. Rahman, 2020. "Disparities in Risks of Malaria Associated with Climatic Variability among Women, Children and Elderly in the Chittagong Hill Tracts of Bangladesh," IJERPH, MDPI, vol. 17(24), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:406-:d:133612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.