IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i14p7467-d593470.html
   My bibliography  Save this article

Economic Evaluation of Mental Health Effects of Flooding Using Bayesian Networks

Author

Listed:
  • Tabassom Sedighi

    (Centre for Environmental and Agricultural Informatics, School of Water, Energy and Environment (SWEE), Cranfield University, Cranfield MK43 0AL, UK)

  • Liz Varga

    (Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering, UCL, London WC1E 6BT, UK)

  • Amin Hosseinian-Far

    (Centre for Sustainable Business Practices, University of Northampton, Northampton NN1 5PH, UK)

  • Alireza Daneshkhah

    (Research Centre for Computational Science and Mathematical Modelling, School of Computing, Electronics and Mathematics, Coventry University, Coventry CV1 5FB, UK)

Abstract

The appraisal of appropriate levels of investment for devising flooding mitigation and to support recovery interventions is a complex and challenging task. Evaluation must account for social, political, environmental and other conditions, such as flood state expectations and local priorities. The evaluation method should be able to quickly identify evolving investment needs as the incidence and magnitude of flood events continue to grow. Quantification is essential and must consider multiple direct and indirect effects on flood related outcomes. The method proposed is this study is a Bayesian network, which may be used ex-post for evaluation, but also ex-ante for future assessment, and near real-time for the reallocation of investment into interventions. The particular case we study is the effect of flood interventions upon mental health, which is a gap in current investment analyses. Natural events such as floods expose people to negative mental health disorders including anxiety, distress and post-traumatic stress disorder. Such outcomes can be mitigated or exacerbated not only by state funded interventions, but by individual and community skills and experience. Success is also dampened when vulnerable and previously exposed victims are affected. Current measures evaluate solely the effectiveness of interventions to reduce physical damage to people and assets. This paper contributes a design for a Bayesian network that exposes causal pathways and conditional probabilities between interventions and mental health outcomes as well as providing a tool that can readily indicate the level of investment needed in alternative interventions based on desired mental health outcomes.

Suggested Citation

  • Tabassom Sedighi & Liz Varga & Amin Hosseinian-Far & Alireza Daneshkhah, 2021. "Economic Evaluation of Mental Health Effects of Flooding Using Bayesian Networks," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:14:p:7467-:d:593470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/14/7467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/14/7467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abhinav Vepa & Amer Saleem & Kambiz Rakhshan & Alireza Daneshkhah & Tabassom Sedighi & Shamarina Shohaimi & Amr Omar & Nader Salari & Omid Chatrabgoun & Diana Dharmaraj & Junaid Sami & Shital Parekh &, 2021. "Using Machine Learning Algorithms to Develop a Clinical Decision-Making Tool for COVID-19 Inpatients," IJERPH, MDPI, vol. 18(12), pages 1-22, June.
    2. Tabassom Sedighi & Liz Varga, 2021. "Evaluating the Bovine Tuberculosis Eradication Mechanism and Its Risk Factors in England’s Cattle Farms," IJERPH, MDPI, vol. 18(7), pages 1-24, March.
    3. Bedford, Tim & Wilson, Kevin J. & Daneshkhah, Alireza, 2014. "Assessing parameter uncertainty on coupled models using minimum information methods," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 3-12.
    4. Dianne Lowe & Kristie L. Ebi & Bertil Forsberg, 2013. "Factors Increasing Vulnerability to Health Effects before, during and after Floods," IJERPH, MDPI, vol. 10(12), pages 1-53, December.
    5. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    6. Laetitia H. M. Schmitt & Hilary M. Graham & Piran C. L. White, 2016. "Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review," IJERPH, MDPI, vol. 13(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    2. John W. McKenzie & Jo M. Longman & Ross Bailie & Maddy Braddon & Geoffrey G. Morgan & Edward Jegasothy & James Bennett-Levy, 2022. "Insurance Issues as Secondary Stressors Following Flooding in Rural Australia—A Mixed Methods Study," IJERPH, MDPI, vol. 19(11), pages 1-13, May.
    3. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    4. Fabiana Navia Miranda & Tiago Miguel Ferreira, 2019. "A simplified approach for flood vulnerability assessment of historic sites," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 713-730, March.
    5. Shijin Wang & Yanqiang Wei, 2019. "Water resource system risk and adaptive management of the Chinese Heihe River Basin in Asian arid areas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1271-1292, October.
    6. Balbi Stefano & Giupponi Carlo & Olschewski Roland & Mojtahed Vahid, 2015. "The Total Cost of Water-Related Disasters," Review of Economics, De Gruyter, vol. 66(2), pages 225-252, August.
    7. Debaditya Shome & T. Kar & Sachi Nandan Mohanty & Prayag Tiwari & Khan Muhammad & Abdullah AlTameem & Yazhou Zhang & Abdul Khader Jilani Saudagar, 2021. "COVID-Transformer: Interpretable COVID-19 Detection Using Vision Transformer for Healthcare," IJERPH, MDPI, vol. 18(21), pages 1-14, October.
    8. Insa Thiele-Eich & Katrin Burkart & Clemens Simmer, 2015. "Trends in Water Level and Flooding in Dhaka, Bangladesh and Their Impact on Mortality," IJERPH, MDPI, vol. 12(2), pages 1-20, January.
    9. Amir Tiyuri & Maryam Rasoulian & Ahmad Hajebi & Morteza Naserbakht & Amir Shabani & Mitra Hakim Shooshtari & Aziz Rezapour & Seyed Abbas Motevalian, 2023. "Psychological impact of the Spring 2019 flood among adult population of Iran," International Journal of Social Psychiatry, , vol. 69(8), pages 1916-1927, December.
    10. Edris Alam & Md Sabur Khan & Roquia Salam, 2022. "Vulnerability assessment based on household views from the Dammar Char in Southeastern Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 329-344, August.
    11. Albert S. Chen & Michael J. Hammond & Slobodan Djordjević & David Butler & David M. Khan & William Veerbeek, 2016. "From hazard to impact: flood damage assessment tools for mega cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 857-890, June.
    12. Md. Nawrose Fatemi & Seth Asare Okyere & Stephen Kofi Diko & Michihiro Kita & Motoki Shimoda & Shigeki Matsubara, 2020. "Physical Vulnerability and Local Responses to Flood Damage in Peri-Urban Areas of Dhaka, Bangladesh," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    13. Moritz Odersky & Max Löffler, 2024. "Differential Exposure to Climate Change? Evidence from the 2021 Floods in Germany," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 22(3), pages 551-576, September.
    14. Laura Bojke & Laetitia Schmitt & James Lomas & Gerry Richardson & Helen Weatherly, 2018. "Economic Evaluation of Environmental Interventions: Reflections on Methodological Challenges and Developments," IJERPH, MDPI, vol. 15(11), pages 1-9, November.
    15. Xilin Liu & Huizhu Chen, 2020. "Regional assessment on ecological risk of ecosystems under natural hazards: an application in Guangdong Province (SE China)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 205-229, January.
    16. Christoph Werner & Tim Bedford & John Quigley, 2018. "Sequential Refined Partitioning for Probabilistic Dependence Assessment," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2683-2702, December.
    17. Fabio Cian & Carlo Giupponi & Mattia Marconcini, 2021. "Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2163-2184, April.
    18. Jejal Reddy Bathi & Himangshu S. Das, 2016. "Vulnerability of Coastal Communities from Storm Surge and Flood Disasters," IJERPH, MDPI, vol. 13(2), pages 1-12, February.
    19. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    20. Md. Shahinoor Rahman & Liping Di, 2017. "The state of the art of spaceborne remote sensing in flood management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1223-1248, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:14:p:7467-:d:593470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.