IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v83y2016i1d10.1007_s11069-016-2382-1.html
   My bibliography  Save this article

Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach

Author

Listed:
  • G. Papaioannou

    (University of Thessaly)

  • A. Loukas

    (University of Thessaly)

  • L. Vasiliades

    (University of Thessaly)

  • G. T. Aronica

    (University of Messina)

Abstract

An innovative approach in the investigation of complex landscapes for hydraulic modelling applications is the use of terrestrial laser scanner (TLS) that can lead to a high-resolution digital elevation model (DEM). Another notable factor in flood modelling is the selection of the hydrodynamic model (1D, 2D and 1D/2D), especially in complex riverine topographies, that can influence the accuracy of flood inundation area and mapping. This paper uses different types of hydraulic–hydrodynamic modelling approaches and several types of river and riparian area spatial resolution for the implementation of a sensitivity analysis for floodplain mapping and flood inundation modelling process at ungauged watersheds. Four data sets have been used for the construction of the river and riparian areas: processed and unprocessed TLS data, topographic land survey data and typical digitized contours from 1:5000-scale topographic maps. Modelling approaches combinations consist of: one-dimensional hydraulic models (HEC-RAS, MIKE 11), two-dimensional hydraulic models (MIKE 21, MIKE 21 FM) and combinations of coupled hydraulic models (MIKE 11/MIKE 21) within the MIKE FLOOD platform. Historical flood records and estimated flooded area derived from an observed extreme flash-flood event have been used in the validation process using 2 × 2 contingency tables. Flood inundation maps have been generated for each modelling approach and landscape configuration at the lower part of Xerias River reach at Volos, Greece, and compared for assessing the sensitivity of input data and model structure uncertainty. Results provided from contingency table analysis indicate the sensitivity of floodplain modelling on the DEM spatial resolution and the hydraulic modelling approach.

Suggested Citation

  • G. Papaioannou & A. Loukas & L. Vasiliades & G. T. Aronica, 2016. "Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 117-132, October.
  • Handle: RePEc:spr:nathaz:v:83:y:2016:i:1:d:10.1007_s11069-016-2382-1
    DOI: 10.1007/s11069-016-2382-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2382-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2382-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferdous Ahmed, 2010. "Numerical modeling of the Rideau Valley Watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(1), pages 63-84, October.
    2. Runtong Zhang & Zhenji Zhang & Kecheng Liu & Juliang Zhang (ed.), 2015. "Liss 2013," Springer Books, Springer, number 978-3-642-40660-7, January.
    3. H. Apel & G. Aronica & H. Kreibich & A. Thieken, 2009. "Flood risk analyses—how detailed do we need to be?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 79-98, April.
    4. Catherine Ticehurst & Dushmanta Dutta & Fazlul Karim & Cuan Petheram & Juan Guerschman, 2015. "Improving the accuracy of daily MODIS OWL flood inundation mapping using hydrodynamic modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 803-820, September.
    5. G. Papaioannou & L. Vasiliades & A. Loukas, 2015. "Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 399-418, January.
    6. Matthias Künzler & Christian Huggel & Juan Ramírez, 2012. "A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 767-796, October.
    7. J. Teng & J. Vaze & D. Dutta & S. Marvanek, 2015. "Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2619-2636, June.
    8. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    9. George Tsakiris & Vasilis Bellos, 2014. "A Numerical Model for Two-Dimensional Flood Routing in Complex Terrains," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1277-1291, March.
    10. Dibyendu Samantaray & Chandranath Chatterjee & Rajendra Singh & Praveen Gupta & Sushma Panigrahy, 2015. "Flood risk modeling for optimal rice planning for delta region of Mahanadi river basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 347-372, March.
    11. Qiang Liu & Yi Qin & Yang Zhang & Ziwen Li, 2015. "A coupled 1D–2D hydrodynamic model for flood simulation in flood detention basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1303-1325, January.
    12. Zhenji Zhang & Zuojun Max Shen & Juliang Zhang & Runtong Zhang (ed.), 2015. "Liss 2014," Springer Books, Springer, edition 127, number 978-3-662-43871-8, January.
    13. Anthi-Eirini Vozinaki & George Karatzas & Ioannis Sibetheros & Emmanouil Varouchakis, 2015. "An agricultural flash flood loss estimation methodology: the case study of the Koiliaris basin (Greece), February 2003 flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 899-920, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    2. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 477-492, June.
    3. Emrah Yalcin, 2020. "Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 995-1017, April.
    4. Peyman Yariyan & Saeid Janizadeh & Tran Phong & Huu Duy Nguyen & Romulus Costache & Hiep Le & Binh Thai Pham & Biswajeet Pradhan & John P. Tiefenbacher, 2020. "Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3037-3053, July.
    5. Chengwei Lu & Jianzhong Zhou & Zhongzheng He & Shuai Yuan, 2018. "Evaluating typical flood risks in Yangtze River Economic Belt: application of a flood risk mapping framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1187-1210, December.
    6. Nikunj K. Mangukiya & Ashutosh Sharma, 2022. "Flood risk mapping for the lower Narmada basin in India: a machine learning and IoT-based framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1285-1304, September.
    7. Mayara Maria Arruda Gomes & Lívia Fragoso Melo Verçosa & José Almir Cirilo, 2021. "Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3121-3157, September.
    8. Neslihan Beden & Asli Ulke Keskin, 2021. "Flood map production and evaluation of flood risks in situations of insufficient flow data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2381-2408, February.
    9. Tewodros Assefa Nigussie & Abdusselam Altunkaynak, 2019. "Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1031-1047, November.
    10. Yan Chen & Hao Hou & Yao Li & Luoyang Wang & Jinjin Fan & Ben Wang & Tangao Hu, 2022. "Urban Inundation under Different Rainstorm Scenarios in Lin’an City, China," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    11. Jong-hyuk Lee & Sang-ik Lee & Youngjoon Jeong & Byung-hun Seo & Dong-su Kim & Ye-jin Seo & Younggu Her & Won Choi, 2024. "Enhancing flood wave modelling of reservoir failure: a comparative study of structure-from-motion based 2D and 3D methodologies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11611-11640, October.
    12. Vineela Nandam & P. L. Patel, 2024. "On the role of digital terrain topography and land use dynamics in flood hazard assessment of urban floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11877-11902, October.
    13. H. Zaifoglu & A. M. Yanmaz & B. Akintug, 2019. "Developing flood mitigation measures for the northern part of Nicosia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 535-557, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Guo & Bingshun He & Meihong Ma & Qingrui Chang & Qing Li & Ke Zhang & Yang Hong, 2018. "A comprehensive flash flood defense system in China: overview, achievements, and outlook," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 727-740, June.
    2. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    3. Fahimah A. Al-Awadhi & Zoulikha Kaid & Ali Laksaci & Idir Ouassou & Mustapha Rachdi, 2019. "Functional data analysis: local linear estimation of the $$L_1$$ L 1 -conditional quantiles," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 217-240, June.
    4. Md Shahinoor Rahman & Liping Di, 2020. "A Systematic Review on Case Studies of Remote-Sensing-Based Flood Crop Loss Assessment," Agriculture, MDPI, vol. 10(4), pages 1-30, April.
    5. Jianzhu Li & Yuming Lei & Senming Tan & Colin D. Bell & Bernard A. Engel & Yixuan Wang, 2018. "Nonstationary Flood Frequency Analysis for Annual Flood Peak and Volume Series in Both Univariate and Bivariate Domain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4239-4252, October.
    6. S. E. Perkins-Kirkpatrick & C. J. White & L. V. Alexander & D. Argüeso & G. Boschat & T. Cowan & J. P. Evans & M. Ekström & E. C. J. Oliver & A. Phatak & A. Purich, 2016. "Natural hazards in Australia: heatwaves," Climatic Change, Springer, vol. 139(1), pages 101-114, November.
    7. Fabio Cian & Carlo Giupponi & Mattia Marconcini, 2021. "Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2163-2184, April.
    8. Linhan Yang & Jianzhu Li & Aiqing Kang & Shuai Li & Ping Feng, 2020. "The Effect of Nonstationarity in Rainfall on Urban Flooding Based on Coupling SWMM and MIKE21," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1535-1551, March.
    9. Prachi Pratyasha Jena & Banamali Panigrahi & Chandranath Chatterjee, 2016. "Assessment of Cartosat-1 DEM for Modeling Floods in Data Scarce Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1293-1309, February.
    10. Yiming Hu & Zhongmin Liang & Vijay P. Singh & Xuebin Zhang & Jun Wang & Binquan Li & Huimin Wang, 2018. "Concept of Equivalent Reliability for Estimating the Design Flood under Non-stationary Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 997-1011, February.
    11. J. Tzabiras & L. Vasiliades & P. Sidiropoulos & A. Loukas & N. Mylopoulos, 2016. "Evaluation of Water Resources Management Strategies to Overturn Climate Change Impacts on Lake Karla Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5819-5844, December.
    12. Huantian Xie & Dingfang Li & Lihua Xiong, 2016. "Exploring the Regional Variance using ARMA-GARCH Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3507-3518, August.
    13. Jianzhu Li & Senming Tan, 2015. "Nonstationary Flood Frequency Analysis for Annual Flood Peak Series, Adopting Climate Indices and Check Dam Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5533-5550, December.
    14. Hang Ha & Quynh Duy Bui & Huy Dinh Nguyen & Binh Thai Pham & Trinh Dinh Lai & Chinh Luu, 2023. "A practical approach to flood hazard, vulnerability, and risk assessing and mapping for Quang Binh province, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1101-1130, February.
    15. Wentao Xu & Cong Jiang & Lei Yan & Lingqi Li & Shuonan Liu, 2018. "An Adaptive Metropolis-Hastings Optimization Algorithm of Bayesian Estimation in Non-Stationary Flood Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1343-1366, March.
    16. Fabiana Navia Miranda & Tiago Miguel Ferreira, 2019. "A simplified approach for flood vulnerability assessment of historic sites," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 713-730, March.
    17. R. Bharath & Amin Elshorbagy, 2018. "Flood mapping under uncertainty: a case study in the Canadian prairies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 537-560, November.
    18. N. Llort & A. Lusa & C. Martínez-Costa & M. Mateo, 2019. "A decision support system and a mathematical model for strategic workforce planning in consultancies," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 497-523, June.
    19. Santiago Gaitan & Marie-claire ten Veldhuis & Nick Giesen, 2015. "Spatial Distribution of Flood Incidents Along Urban Overland Flow-Paths," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3387-3399, July.
    20. Neslihan Beden & Asli Ulke Keskin, 2021. "Flood map production and evaluation of flood risks in situations of insufficient flow data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2381-2408, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:83:y:2016:i:1:d:10.1007_s11069-016-2382-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.