IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v125y2014icp3-12.html
   My bibliography  Save this article

Assessing parameter uncertainty on coupled models using minimum information methods

Author

Listed:
  • Bedford, Tim
  • Wilson, Kevin J.
  • Daneshkhah, Alireza

Abstract

Probabilistic inversion is used to take expert uncertainty assessments about observable model outputs and build from them a distribution on the model parameters that captures the uncertainty expressed by the experts. In this paper we look at ways to use minimum information methods to do this, focussing in particular on the problem of ensuring consistency between expert assessments about differing variables, either as outputs from a single model or potentially as outputs along a chain of models. The paper shows how such a problem can be structured and then illustrates the method with two examples; one involving failure rates of equipment in series systems and the other atmospheric dispersion and deposition.

Suggested Citation

  • Bedford, Tim & Wilson, Kevin J. & Daneshkhah, Alireza, 2014. "Assessing parameter uncertainty on coupled models using minimum information methods," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 3-12.
  • Handle: RePEc:eee:reensy:v:125:y:2014:i:c:p:3-12
    DOI: 10.1016/j.ress.2013.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013001427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernd Kraan & Tim Bedford, 2005. "Probabilistic Inversion of Expert Judgments in the Quantification of Model Uncertainty," Management Science, INFORMS, vol. 51(6), pages 995-1006, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Medeiros, C.P. & Alencar, M.H. & de Almeida, A.T., 2017. "Multidimensional risk evaluation of natural gas pipelines based on a multicriteria decision model using visualization tools and statistical tests for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 268-276.
    2. Fouladirad, Mitra & Paroissin, Christian & Grall, Antoine, 2018. "Sensitivity of optimal replacement policies to lifetime parameter estimates," European Journal of Operational Research, Elsevier, vol. 266(3), pages 963-975.
    3. Christoph Werner & Tim Bedford & John Quigley, 2018. "Sequential Refined Partitioning for Probabilistic Dependence Assessment," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2683-2702, December.
    4. Tabassom Sedighi & Liz Varga & Amin Hosseinian-Far & Alireza Daneshkhah, 2021. "Economic Evaluation of Mental Health Effects of Flooding Using Bayesian Networks," IJERPH, MDPI, vol. 18(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioanna Ioannou & Jaime E. Cadena & Willy Aspinall & David Lange & Daniel Honfi & Tiziana Rossetto, 2022. "Prioritization of hazards for risk and resilience management through elicitation of expert judgement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2773-2795, July.
    2. Ríos Insua, David & Cano, Javier & Pellot, Michael & Ortega, Ricardo, 2016. "Multithreat multisite protection: A security case study," European Journal of Operational Research, Elsevier, vol. 252(3), pages 888-899.
    3. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    4. R. E. J. Neslo & W. Oei & M. P. Janssen, 2017. "Insight into “Calculated Risk”: An Application to the Prioritization of Emerging Infectious Diseases for Blood Transfusion Safety," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1783-1795, September.
    5. Wilson, Alyson G. & Anderson-Cook, Christine M. & Huzurbazar, Aparna V., 2011. "A case study for quantifying system reliability and uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1076-1084.
    6. Cooke, Roger M. & Goossens, Louis L.H.J., 2008. "TU Delft expert judgment data base," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 657-674.
    7. Bier, Vicki M. & Kosanoglu, Fuat, 2015. "Target-oriented utility theory for modeling the deterrent effects of counterterrorism," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 35-46.
    8. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.
    9. Christoph Werner & Tim Bedford & John Quigley, 2018. "Sequential Refined Partitioning for Probabilistic Dependence Assessment," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2683-2702, December.
    10. de Jonge, Bram & Klingenberg, Warse & Teunter, Ruud & Tinga, Tiedo, 2015. "Optimum maintenance strategy under uncertainty in the lifetime distribution," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 59-67.
    11. Chen Wang & Vicki M. Bier, 2013. "Expert Elicitation of Adversary Preferences Using Ordinal Judgments," Operations Research, INFORMS, vol. 61(2), pages 372-385, April.
    12. Kosanoglu, Fuat & Bier, Vicki M., 2020. "Target-oriented utility for interdiction of transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:125:y:2014:i:c:p:3-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.