IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v10y2013i12p7015-7067d31236.html
   My bibliography  Save this article

Factors Increasing Vulnerability to Health Effects before, during and after Floods

Author

Listed:
  • Dianne Lowe

    (Department of Public Health & Clinical Medicine, Occupational and Environmental Medicine, Umeå University, SE-90187 Umeå, Sweden
    Centre for Health Communication and Participation, School of Public Health & Human Biosciences, La Trobe University, Victoria 3086, Australia)

  • Kristie L. Ebi

    (Department of Public Health & Clinical Medicine, Occupational and Environmental Medicine, Umeå University, SE-90187 Umeå, Sweden)

  • Bertil Forsberg

    (Department of Public Health & Clinical Medicine, Occupational and Environmental Medicine, Umeå University, SE-90187 Umeå, Sweden)

Abstract

Identifying the risk factors for morbidity and mortality effects pre-, during and post-flood may aid the appropriate targeting of flood-related adverse health prevention strategies. We conducted a systematic PubMed search to identify studies examining risk factors for health effects of precipitation-related floods, among Organisation for Economic Co-Operation and Development (OECD) member countries. Research identifying flood-related morbidity and mortality risk factors is limited and primarily examines demographic characteristics such as age and gender. During floods, females, elderly and children appear to be at greater risk of psychological and physical health effects, while males between 10 to 29 years may be at greater risk of mortality. Post-flood, those over 65 years and males are at increased risk of physical health effects, while females appear at greater risk of psychological health effects. Other risk factors include previous flood experiences, greater flood depth or flood trauma, existing illnesses, medication interruption, and low education or socio-economic status. Tailoring messages to high-risk groups may increase their effectiveness. Target populations differ for morbidity and mortality effects, and differ pre-, during, and post-flood. Additional research is required to identify the risk factors associated with pre- and post-flood mortality and post-flood morbidity, preferably using prospective cohort studies.

Suggested Citation

  • Dianne Lowe & Kristie L. Ebi & Bertil Forsberg, 2013. "Factors Increasing Vulnerability to Health Effects before, during and after Floods," IJERPH, MDPI, vol. 10(12), pages 1-53, December.
  • Handle: RePEc:gam:jijerp:v:10:y:2013:i:12:p:7015-7067:d:31236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/10/12/7015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/10/12/7015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Jonkman, 2005. "Global Perspectives on Loss of Human Life Caused by Floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(2), pages 151-175, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moritz Odersky & Max Löffler, 2024. "Differential Exposure to Climate Change? Evidence from the 2021 Floods in Germany," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 22(3), pages 551-576, September.
    2. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    3. Jejal Reddy Bathi & Himangshu S. Das, 2016. "Vulnerability of Coastal Communities from Storm Surge and Flood Disasters," IJERPH, MDPI, vol. 13(2), pages 1-12, February.
    4. Elsa Landaverde & Mélissa Généreux & Danielle Maltais & Philippe Gachon, 2022. "Respiratory and Otolaryngology Symptoms Following the 2019 Spring Floods in Quebec," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    5. Insa Thiele-Eich & Katrin Burkart & Clemens Simmer, 2015. "Trends in Water Level and Flooding in Dhaka, Bangladesh and Their Impact on Mortality," IJERPH, MDPI, vol. 12(2), pages 1-20, January.
    6. Amir Tiyuri & Maryam Rasoulian & Ahmad Hajebi & Morteza Naserbakht & Amir Shabani & Mitra Hakim Shooshtari & Aziz Rezapour & Seyed Abbas Motevalian, 2023. "Psychological impact of the Spring 2019 flood among adult population of Iran," International Journal of Social Psychiatry, , vol. 69(8), pages 1916-1927, December.
    7. Peter S. Larson & Carina Gronlund & Lyke Thompson & Natalie Sampson & Ramona Washington & Jamie Steis Thorsby & Natalie Lyon & Carol Miller, 2021. "Recurrent Home Flooding in Detroit, MI 2012–2020: Results of a Household Survey," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    8. Jordis S. Tradowsky & Sjoukje Y. Philip & Frank Kreienkamp & Sarah F. Kew & Philip Lorenz & Julie Arrighi & Thomas Bettmann & Steven Caluwaerts & Steven C. Chan & Lesley De Cruz & Hylke de Vries & Nor, 2023. "Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021," Climatic Change, Springer, vol. 176(7), pages 1-38, July.
    9. Alejandra Maldonado & Timothy W. Collins & Sara E. Grineski & Jayajit Chakraborty, 2016. "Exposure to Flood Hazards in Miami and Houston: Are Hispanic Immigrants at Greater Risk than Other Social Groups?," IJERPH, MDPI, vol. 13(8), pages 1-20, August.
    10. John W. McKenzie & Jo M. Longman & Ross Bailie & Maddy Braddon & Geoffrey G. Morgan & Edward Jegasothy & James Bennett-Levy, 2022. "Insurance Issues as Secondary Stressors Following Flooding in Rural Australia—A Mixed Methods Study," IJERPH, MDPI, vol. 19(11), pages 1-13, May.
    11. Windra Prayoga & Masateru Nishiyama & Susan Praise & Dung Viet Pham & Hieu Van Duong & Lieu Khac Pham & Loc Thi Thanh Dang & Toru Watanabe, 2021. "Tracking Fecal Bacterial Dispersion from Municipal Wastewater to Peri-Urban Farms during Monsoon Rains in Hue City, Vietnam," IJERPH, MDPI, vol. 18(18), pages 1-18, September.
    12. Natalie R. Sampson & Carmel E. Price & Julia Kassem & Jessica Doan & Janine Hussein, 2018. "“We’re Just Sitting Ducks”: Recurrent Household Flooding as An Underreported Environmental Health Threat in Detroit’s Changing Climate," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
    13. Tabassom Sedighi & Liz Varga & Amin Hosseinian-Far & Alireza Daneshkhah, 2021. "Economic Evaluation of Mental Health Effects of Flooding Using Bayesian Networks," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    14. Emal Ahmad Hussainzad & Zhonghua Gou, 2024. "Climate Risk and Vulnerability Assessment in Informal Settlements of the Global South: A Critical Review," Land, MDPI, vol. 13(9), pages 1-63, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    2. Rebecca E. Morss & Julie L. Demuth & Ann Bostrom & Jeffrey K. Lazo & Heather Lazrus, 2015. "Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2009-2028, November.
    3. Sivadasan, Jagadeesh & Xu, Wenjian, 2021. "Missing women in India: Gender-specific effects of early-life rainfall shocks," World Development, Elsevier, vol. 148(C).
    4. María Isabel Arango & Edier Aristizábal & Federico Gómez, 2021. "Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 983-1012, January.
    5. Francesco Serinaldi & Florian Loecker & Chris G. Kilsby & Hubert Bast, 2018. "Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 71-92, October.
    6. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    7. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    8. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    9. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    10. Morteza T. Marvi, 2020. "A review of flood damage analysis for a building structure and contents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 967-995, July.
    11. S. Mosquera-Machado & Sajjad Ahmad, 2007. "Flood hazard assessment of Atrato River in Colombia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 591-609, March.
    12. Dilshad Ahmad & Mohammad Afzal & Abdur Rauf, 2021. "Farmers’ adaptation decisions to landslides and flash floods in the mountainous region of Khyber Pakhtunkhwa of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8573-8600, June.
    13. José Barredo, 2007. "Major flood disasters in Europe: 1950–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 125-148, July.
    14. Guozhen Wei & Wei Ding & Guohua Liang & Bin He & Jian Wu & Rui Zhang & Huicheng Zhou, 2022. "A New Framework Based on Data-Based Mechanistic Model and Forgetting Mechanism for Flood Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3591-3607, August.
    15. Helen Boon, 2014. "Disaster resilience in a flood-impacted rural Australian town," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 683-701, March.
    16. Guleid Artan & Hussein Gadain & Jodie Smith & Kwabena Asante & Christina Bandaragoda & James Verdin, 2007. "Adequacy of satellite derived rainfall data for stream flow modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 167-185, November.
    17. Insa Thiele-Eich & Katrin Burkart & Clemens Simmer, 2015. "Trends in Water Level and Flooding in Dhaka, Bangladesh and Their Impact on Mortality," IJERPH, MDPI, vol. 12(2), pages 1-20, January.
    18. Umesh Chaudhary & Mohammad Aminur Rahman Shah & Bijay Man Shakya & Anil Aryal, 2024. "Flood Susceptibility and Risk Mapping of Kathmandu Valley Watershed, Nepal," Sustainability, MDPI, vol. 16(16), pages 1-28, August.
    19. Weixiao Han & Chen Liang & Baofa Jiang & Wei Ma & Ying Zhang, 2016. "Major Natural Disasters in China, 1985–2014: Occurrence and Damages," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    20. Alaa Ahmed & Abdullah Alrajhi & Abdulaziz Alquwaizany & Ali Al Maliki & Guna Hewa, 2022. "Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia," Sustainability, MDPI, vol. 14(23), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:10:y:2013:i:12:p:7015-7067:d:31236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.