IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i14p7363-d591549.html
   My bibliography  Save this article

Performance Evaluation of Particulate Matter and Indoor Microclimate Monitors in University Classrooms under COVID-19 Restrictions

Author

Listed:
  • Laurentiu Predescu

    (Department of Food Engineering, Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, Aleea Sinaia No. 13, 130004 Targoviste, Romania)

  • Daniel Dunea

    (Department of Environmental Engineering, Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, Aleea Sinaia No. 13, 130004 Targoviste, Romania)

Abstract

Optical monitors have proven their versatility into the studies of air quality in the workplace and indoor environments. The current study aimed to perform a screening of the indoor environment regarding the presence of various fractions of particulate matter (PM) and the specific thermal microclimate in a classroom occupied with students in March 2019 (before COVID-19 pandemic) and in March 2021 (during pandemic) at Valahia University Campus, Targoviste, Romania. The objectives were to assess the potential exposure of students and academic personnel to PM and to observe the performances of various sensors and monitors (particle counter, PM monitors, and indoor microclimate sensors). PM1 ranged between 29 and 41 ?g m ?3 and PM10 ranged between 30 and 42 ?g m ?3 . It was observed that the particles belonged mostly to fine and submicrometric fractions in acceptable thermal environments according to the PPD and PMV indices. The particle counter recorded preponderantly 0.3, 0.5, and 1.0 micron categories. The average acute dose rate was estimated as 6.58 × 10 ?4 mg/kg-day (CV = 14.3%) for the 20–40 years range. Wearing masks may influence the indoor microclimate and PM levels but additional experiments should be performed at a finer scale.

Suggested Citation

  • Laurentiu Predescu & Daniel Dunea, 2021. "Performance Evaluation of Particulate Matter and Indoor Microclimate Monitors in University Classrooms under COVID-19 Restrictions," IJERPH, MDPI, vol. 18(14), pages 1-19, July.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:14:p:7363-:d:591549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/14/7363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/14/7363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandra Cincinelli & Tania Martellini, 2017. "Indoor Air Quality and Health," IJERPH, MDPI, vol. 14(11), pages 1-5, October.
    2. Marie-Eve Héroux & H. Anderson & Richard Atkinson & Bert Brunekreef & Aaron Cohen & Francesco Forastiere & Fintan Hurley & Klea Katsouyanni & Daniel Krewski & Michal Krzyzanowski & Nino Künzli & Inga , 2015. "Quantifying the health impacts of ambient air pollutants: recommendations of a WHO/Europe project," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 60(5), pages 619-627, July.
    3. Francesca Borghi & Giacomo Fanti & Andrea Cattaneo & Davide Campagnolo & Sabrina Rovelli & Marta Keller & Andrea Spinazzè & Domenico Maria Cavallo, 2020. "Estimation of the Inhaled Dose of Airborne Pollutants during Commuting: Case Study and Application for the General Population," IJERPH, MDPI, vol. 17(17), pages 1-14, August.
    4. Tareq Hussein & Jakob Löndahl & Sara Thuresson & Malin Alsved & Afnan Al-Hunaiti & Kalle Saksela & Hazem Aqel & Heikki Junninen & Alexander Mahura & Markku Kulmala, 2021. "Indoor Model Simulation for COVID-19 Transport and Exposure," IJERPH, MDPI, vol. 18(6), pages 1-16, March.
    5. Johra, Hicham & Heiselberg, Per, 2017. "Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 19-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam C. O’Donovan & Fergus Delaney & Taïna Ouvrard & Paol Geoffroy & Paul D. O’Sullivan, 2024. "Effect of Infectious Disease Risk Management on Indoor Environmental Quality in Lecture Rooms: Current Performance and Future Considerations," Sustainability, MDPI, vol. 16(23), pages 1-22, December.
    2. Ana Bustamante-Mora & Mauricio Diéguez-Rebolledo & Milagros Zegarra & Francisco Escobar & Gabriel Epuyao, 2025. "Environmental Conditions and Their Impact on Student Concentration and Learning in University Environments: A Case Study of Education for Sustainability," Sustainability, MDPI, vol. 17(3), pages 1-33, January.
    3. Vesna Lovec & Miroslav Premrov & Vesna Žegarac Leskovar, 2021. "Practical Impact of the COVID-19 Pandemic on Indoor Air Quality and Thermal Comfort in Kindergartens. A Case Study of Slovenia," IJERPH, MDPI, vol. 18(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Reilly, Aidan & Kinnane, Oliver, 2017. "The impact of thermal mass on building energy consumption," Applied Energy, Elsevier, vol. 198(C), pages 108-121.
    3. Christiane Berger & Ardeshir Mahdavi & Elie Azar & Karol Bandurski & Leonidas Bourikas & Timuçin Harputlugil & Runa T. Hellwig & Ricardo Forgiarini Rupp & Marcel Schweiker, 2022. "Reflections on the Evidentiary Basis of Indoor Air Quality Standards," Energies, MDPI, vol. 15(20), pages 1-18, October.
    4. Mengting Liao & Yi Xiao & Shenxin Li & Juan Su & Ji Li & Bin Zou & Xiang Chen & Minxue Shen, 2022. "Synergistic Effects between Ambient Air Pollution and Second-Hand Smoke on Inflammatory Skin Diseases in Chinese Adolescents," IJERPH, MDPI, vol. 19(16), pages 1-12, August.
    5. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
    6. Echeverría, Lucía & Gimenez-Nadal, José Ignacio & Molina, José Alberto, 2022. "Active Commuting and the Health of Workers," IZA Discussion Papers 15572, Institute of Labor Economics (IZA).
    7. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    9. James K. Hammitt & Peter Morfeld & Jouni T. Tuomisto & Thomas C. Erren, 2020. "Premature Deaths, Statistical Lives, and Years of Life Lost: Identification, Quantification, and Valuation of Mortality Risks," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 674-695, April.
    10. Hu, Yue & Guo, Rui & Heiselberg, Per Kvols, 2020. "Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study," Renewable Energy, Elsevier, vol. 155(C), pages 134-152.
    11. Giuliano Molinari & Laura Molinari & Elsa Nervo, 2020. "Environmental and Endogenous Acids Can Trigger Allergic-Type Airway Reactions," IJERPH, MDPI, vol. 17(13), pages 1-16, June.
    12. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    13. Ricky Camplain & Monica R. Lininger & Julie A. Baldwin & Robert T. Trotter, 2021. "Cardiovascular Risk Factors among Individuals Incarcerated in an Arizona County Jail," IJERPH, MDPI, vol. 18(13), pages 1-13, June.
    14. Roberto Albertini & Maria Eugenia Colucci & Isabella Viani & Emanuela Capobianco & Michele Serpentino & Alessia Coluccia & Mostafa Mohieldin Mahgoub Ibrahim & Roberta Zoni & Paola Affanni & Licia Vero, 2024. "Study on the Effectiveness of a Copper Electrostatic Filtration System “Aerok 1.0” for Air Disinfection," IJERPH, MDPI, vol. 21(9), pages 1-12, September.
    15. Diyi Liu & Kun Cheng & Kevin Huang & Hui Ding & Tiantong Xu & Zhenni Chen & Yanqi Sun, 2022. "Visualization and Analysis of Air Pollution and Human Health Based on Cluster Analysis: A Bibliometric Review from 2001 to 2021," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    16. Sonnia Parra & Hanns de la Fuente-Mella & Andrea González-Rojas & Manuel A. Bravo, 2024. "Exposure to Environmental Pollution in Schools of Puchuncaví, Chile: Characterization of Heavy Metals, Health Risk Assessment, and Effects on Children’s Academic Performance," Sustainability, MDPI, vol. 16(6), pages 1-31, March.
    17. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.
    18. Almalkawi, Areej T. & Soroushian, Parviz & Shrestha, Som S., 2019. "Evaluation of the Energy-Efficiency of an Aerated Slurry-Infiltrated Mesh Building System with Biomass-Based Insulation," Renewable Energy, Elsevier, vol. 133(C), pages 797-806.
    19. Wang, Huilong & Wang, Shengwei, 2021. "A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids," Energy, Elsevier, vol. 230(C).
    20. Chen, Jiayu & Qiu, Qiwen & Han, Yilong & Lau, Denvid, 2019. "Piezoelectric materials for sustainable building structures: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 14-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:14:p:7363-:d:591549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.