IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i21p8224-d441208.html
   My bibliography  Save this article

Comparative Analysis of PM 2.5 -Bound Polycyclic Aromatic Hydrocarbons (PAHs), Nitro-PAHs (NPAHs), and Water-Soluble Inorganic Ions (WSIIs) at Two Background Sites in Japan

Author

Listed:
  • Lu Yang

    (Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan)

  • Lulu Zhang

    (Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan)

  • Hao Zhang

    (Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan)

  • Quanyu Zhou

    (Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan)

  • Xuan Zhang

    (Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan)

  • Wanli Xing

    (Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan)

  • Akinori Takami

    (National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan)

  • Kei Sato

    (National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan)

  • Atsushi Shimizu

    (National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan)

  • Ayako Yoshino

    (National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan)

  • Naoki Kaneyasu

    (National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan)

  • Atsushi Matsuki

    (Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan)

  • Kazuichi Hayakawa

    (Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan)

  • Akira Toriba

    (Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan)

  • Ning Tang

    (Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
    Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan)

Abstract

Daily PM 2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) samples were simultaneously collected at two background sites (Wajima Air Monitoring Station (WAMS) and Fukue-Jima Atmosphere and Aerosol Monitoring Station (FAMS)) in Japan in the East Asian winter and summer monsoon periods of 2017 and 2019, to compare the characteristics of air pollutants among different regions and to determine the possible variation during the long-range transport process. Polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and water-soluble inorganic ions (WSIIs) were analyzed. Despite the PM 2.5 concentrations at FAMS (8.90–78.5 µg/m 3 ) being higher than those at WAMS (2.33–21.2 µg/m 3 ) in the winter monsoon period, the average concentrations of ∑PAHs, ∑NPAHs, and ∑WSIIs were similar between the two sites. Diagnostic ratios indicated PAHs mainly originated from traffic emissions and mostly aged, whereas NPAHs were mostly secondarily formed during long-range transport. WSIIs at WAMS were mainly formed via the combustion process and secondary reactions, whereas those at FAMS mainly originated from sea salt and dust. Backward trajectories revealed the air masses could not only come from Asian continental coastal regions but also distant landlocked areas in the winter monsoon period, whereas most came from the ocean in the summer monsoon period. These findings can provide basic data for the establishment of prediction models of transboundary air pollutants in East Asia.

Suggested Citation

  • Lu Yang & Lulu Zhang & Hao Zhang & Quanyu Zhou & Xuan Zhang & Wanli Xing & Akinori Takami & Kei Sato & Atsushi Shimizu & Ayako Yoshino & Naoki Kaneyasu & Atsushi Matsuki & Kazuichi Hayakawa & Akira To, 2020. "Comparative Analysis of PM 2.5 -Bound Polycyclic Aromatic Hydrocarbons (PAHs), Nitro-PAHs (NPAHs), and Water-Soluble Inorganic Ions (WSIIs) at Two Background Sites in Japan," IJERPH, MDPI, vol. 17(21), pages 1-16, November.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:21:p:8224-:d:441208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/21/8224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/21/8224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuan Zhang & Lulu Zhang & Lu Yang & Quanyu Zhou & Wanli Xing & Akira Toriba & Kazuichi Hayakawa & Yongjie Wei & Ning Tang, 2020. "Characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) and Common Air Pollutants at Wajima, a Remote Background Site in Japan," IJERPH, MDPI, vol. 17(3), pages 1-16, February.
    2. Wanli Xing & Lulu Zhang & Lu Yang & Quanyu Zhou & Xuan Zhang & Akira Toriba & Kazuichi Hayakawa & Ning Tang, 2020. "Characteristics of PM 2.5 -Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons at A Roadside Air Pollution Monitoring Station in Kanazawa, Japan," IJERPH, MDPI, vol. 17(3), pages 1-11, January.
    3. Lu Yang & Genki Suzuki & Lulu Zhang & Quanyu Zhou & Xuan Zhang & Wanli Xing & Masayuki Shima & Yoshiko Yoda & Ryohei Nakatsubo & Takatoshi Hiraki & Baijun Sun & Wenhua Fu & Hongye Qi & Kazuichi Hayaka, 2019. "The Characteristics of Polycyclic Aromatic Hydrocarbons in Different Emission Source Areas in Shenyang, China," IJERPH, MDPI, vol. 16(16), pages 1-11, August.
    4. Batdelger Byambaa & Lu Yang & Atsushi Matsuki & Edward G. Nagato & Khongor Gankhuyag & Byambatseren Chuluunpurev & Lkhagvajargal Banzragch & Sonomdagva Chonokhuu & Ning Tang & Kazuichi Hayakawa, 2019. "Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City, Mongolia," IJERPH, MDPI, vol. 16(3), pages 1-16, February.
    5. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Yang & Quanyu Zhou & Hao Zhang & Xuan Zhang & Wanli Xing & Yan Wang & Pengchu Bai & Masahito Yamauchi & Tetsuji Chohji & Lulu Zhang & Kazuichi Hayakawa & Akira Toriba & Ning Tang, 2021. "Atmospheric Behaviour of Polycyclic and Nitro-Polycyclic Aromatic Hydrocarbons and Water-Soluble Inorganic Ions in Winter in Kirishima, a Typical Japanese Commercial City," IJERPH, MDPI, vol. 18(2), pages 1-14, January.
    2. Hao Zhang & Lu Yang & Xuan Zhang & Wanli Xing & Yan Wang & Pengchu Bai & Lulu Zhang & Ying Li & Kazuichi Hayakawa & Akira Toriba & Ning Tang, 2021. "Characteristics and Health Risks of Polycyclic Aromatic Hydrocarbons and Nitro-PAHs in Xinxiang, China in 2015 and 2017," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    3. Lu Yang & Hao Zhang & Xuan Zhang & Wanli Xing & Yan Wang & Pengchu Bai & Lulu Zhang & Kazuichi Hayakawa & Akira Toriba & Ning Tang, 2021. "Exposure to Atmospheric Particulate Matter-Bound Polycyclic Aromatic Hydrocarbons and Their Health Effects: A Review," IJERPH, MDPI, vol. 18(4), pages 1-25, February.
    4. Yan Wang & Hao Zhang & Xuan Zhang & Pengchu Bai & Andrey Neroda & Vassily F. Mishukov & Lulu Zhang & Kazuichi Hayakawa & Seiya Nagao & Ning Tang, 2022. "PM-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in the Ambient Air of Vladivostok: Seasonal Variation, Sources, Health Risk Assessment and Long-Term Variability," IJERPH, MDPI, vol. 19(5), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Yang & Hao Zhang & Xuan Zhang & Wanli Xing & Yan Wang & Pengchu Bai & Lulu Zhang & Kazuichi Hayakawa & Akira Toriba & Ning Tang, 2021. "Exposure to Atmospheric Particulate Matter-Bound Polycyclic Aromatic Hydrocarbons and Their Health Effects: A Review," IJERPH, MDPI, vol. 18(4), pages 1-25, February.
    2. Lu Yang & Quanyu Zhou & Hao Zhang & Xuan Zhang & Wanli Xing & Yan Wang & Pengchu Bai & Masahito Yamauchi & Tetsuji Chohji & Lulu Zhang & Kazuichi Hayakawa & Akira Toriba & Ning Tang, 2021. "Atmospheric Behaviour of Polycyclic and Nitro-Polycyclic Aromatic Hydrocarbons and Water-Soluble Inorganic Ions in Winter in Kirishima, a Typical Japanese Commercial City," IJERPH, MDPI, vol. 18(2), pages 1-14, January.
    3. Yan Wang & Hao Zhang & Xuan Zhang & Pengchu Bai & Andrey Neroda & Vassily F. Mishukov & Lulu Zhang & Kazuichi Hayakawa & Seiya Nagao & Ning Tang, 2022. "PM-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in the Ambient Air of Vladivostok: Seasonal Variation, Sources, Health Risk Assessment and Long-Term Variability," IJERPH, MDPI, vol. 19(5), pages 1-13, March.
    4. Hao Zhang & Xuan Zhang & Yan Wang & Pengchu Bai & Kazuichi Hayakawa & Lulu Zhang & Ning Tang, 2022. "Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review," IJERPH, MDPI, vol. 19(7), pages 1-17, March.
    5. Takashi Kubo & Wenzhi Bai & Masaki Nagae & Yuji Takao, 2020. "Seasonal Fluctuation of Polycyclic Aromatic Hydrocarbons and Aerosol Genotoxicity in Long-Range Transported Air Mass Observed at the Western End of Japan," IJERPH, MDPI, vol. 17(4), pages 1-15, February.
    6. Xuan Zhang & Lu Yang & Hao Zhang & Wanli Xing & Yan Wang & Pengchu Bai & Lulu Zhang & Kazuichi Hayakawa & Akira Toriba & Yongjie Wei & Ning Tang, 2021. "Assessing Approaches of Human Inhalation Exposure to Polycyclic Aromatic Hydrocarbons: A Review," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    7. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    8. Héctor Jorquera & Ana María Villalobos, 2020. "Combining Cluster Analysis of Air Pollution and Meteorological Data with Receptor Model Results for Ambient PM 2.5 and PM 10," IJERPH, MDPI, vol. 17(22), pages 1-25, November.
    9. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    10. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    11. Hongjun Yu & Jiali Cheng & Shelby Paige Gordon & Ruopeng An & Miao Yu & Xiaodan Chen & Qingli Yue & Jun Qiu, 2018. "Impact of Air Pollution on Sedentary Behavior: A Cohort Study of Freshmen at a University in Beijing, China," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    12. Stefani Kulebanova & Jana Prodanova & Aleksandra Dedinec & Trifce Sandev & Desheng Wu & Ljupco Kocarev, 2024. "Media Sentiment on Air Pollution: Seasonal Trends in Relation to PM10 Levels," Sustainability, MDPI, vol. 16(15), pages 1-20, July.
    13. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    14. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    15. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    16. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    17. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
    18. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    19. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.
    20. Ling-Yun He & Xiao-Feng Qi, 2021. "Environmental Courts, Environment and Employment: Evidence from China," Sustainability, MDPI, vol. 13(11), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:21:p:8224-:d:441208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.