IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v22y2025i2p167-d1577738.html
   My bibliography  Save this article

Long-Term Greenness Effects of Urban Forests to Reduce PM 10 Concentration: Does the Impact Benefit the Population Vulnerable to Asthma?

Author

Listed:
  • Jinsuk Jeong

    (Livable Urban Forests Research Center, National Institute of Forest Science, 57 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea)

  • Chaewan Kim

    (Livable Urban Forests Research Center, National Institute of Forest Science, 57 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea)

  • Sumin Choi

    (Livable Urban Forests Research Center, National Institute of Forest Science, 57 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea)

  • Hong-Duck Sou

    (Livable Urban Forests Research Center, National Institute of Forest Science, 57 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea)

  • Chan-Ryul Park

    (Livable Urban Forests Research Center, National Institute of Forest Science, 57 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea)

Abstract

This study investigates the effect of urban forests in reducing particulate matter (PM) concentrations and its subsequent impact on the number of asthma care visits. Understanding the mechanisms behind the relationship between the greenness of blocking forests and the reduction in PM is crucial for assessing the associated human health benefits. This study analyzed the influencing factors for reducing long-term PM 10 concentrations, utilizing the vegetation index and meteorological variables. Results showed that the reduction in PM 10 began in 2011, five years after the establishment of the blocking forest. The annual mean PM 10 concentrations decreased significantly, driven primarily by summer wind speed and summer Enhanced Vegetation Index (EVI), explaining approximately 62% of the variation. A decrease in the number of asthma care visits was observed, similar to the trend of PM 10 reduction in the residential area and the increase in the greenness of the blocking forest. The influx of PM into the city, primarily driven by prevailing northwesterly winds, may have been mitigated by the growing blocking forest, contributing to a reduction in asthma-related medical visits among urban residents. In particular, since the onset of the COVID-19 pandemic in 2020, the increase in the PM 2.5 /PM 10 ratio in residential areas has become more closely linked to the increase in asthma-related medical visits. It suggests another PM 2.5 emission source in the residential area. The number of asthma care visits among children (under 11) and the elderly (over 65) exhibited a strong positive correlation with PM 10 levels and a negative correlation with the Normalized Difference Vegetation Index (NDVI). This suggests a link between air quality improvement from the greenness of blocking forests with their capacity to capture PM and respiratory health outcomes, especially for the vulnerable groups to asthma. These findings highlight the need to manage pollutant sources such as transportation and the heating system in residential areas beyond industrial emissions as the point pollution source. The management policies have to focus on protecting vulnerable populations, such as children and the elderly, by implementing small-sized urban forests to adsorb the PM 2.5 within the city and establishing blocking forests to prevent PM 10 near the industrial complex.

Suggested Citation

  • Jinsuk Jeong & Chaewan Kim & Sumin Choi & Hong-Duck Sou & Chan-Ryul Park, 2025. "Long-Term Greenness Effects of Urban Forests to Reduce PM 10 Concentration: Does the Impact Benefit the Population Vulnerable to Asthma?," IJERPH, MDPI, vol. 22(2), pages 1-16, January.
  • Handle: RePEc:gam:jijerp:v:22:y:2025:i:2:p:167-:d:1577738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/22/2/167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/22/2/167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. YunEui Choi & Eunhye Ji & Jinhyung Chon, 2021. "Development and Verification of the Effectiveness of a Fine Dust Reduction Planting Model for Socially Vulnerable Area," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    2. Sin-Yee Yoo & Taehee Kim & Suhan Ham & Sumin Choi & Chan-Ryul Park, 2020. "Importance of Urban Green at Reduction of Particulate Matters in Sihwa Industrial Complex, Korea," Sustainability, MDPI, vol. 12(18), pages 1-10, September.
    3. Tianhao Zhang & Wei Gong & Wei Wang & Yuxi Ji & Zhongmin Zhu & Yusi Huang, 2016. "Ground Level PM 2.5 Estimates over China Using Satellite-Based Geographically Weighted Regression (GWR) Models Are Improved by Including NO 2 and Enhanced Vegetation Index (EVI)," IJERPH, MDPI, vol. 13(12), pages 1-12, December.
    4. Kathleen L. Wolf & Sharon T. Lam & Jennifer K. McKeen & Gregory R.A. Richardson & Matilda van den Bosch & Adrina C. Bardekjian, 2020. "Urban Trees and Human Health: A Scoping Review," IJERPH, MDPI, vol. 17(12), pages 1-30, June.
    5. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goran Krsnik & Sonia Reyes-Paecke & Keith M. Reynolds & Jordi Garcia-Gonzalo & José Ramón González Olabarria, 2023. "Assessing Relativeness in the Provision of Urban Ecosystem Services: Better Comparison Methods for Improved Well-Being," Land, MDPI, vol. 12(5), pages 1-16, May.
    2. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    3. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    4. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    5. Stefani Kulebanova & Jana Prodanova & Aleksandra Dedinec & Trifce Sandev & Desheng Wu & Ljupco Kocarev, 2024. "Media Sentiment on Air Pollution: Seasonal Trends in Relation to PM10 Levels," Sustainability, MDPI, vol. 16(15), pages 1-20, July.
    6. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    7. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    8. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    9. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
    10. Judith Schröder & Susanne Moebus & Julita Skodra, 2022. "Selected Research Issues of Urban Public Health," IJERPH, MDPI, vol. 19(9), pages 1-28, May.
    11. Keshab Thapa & Melanie Laforest & Catherine Banning & Shirley Thompson, 2024. "“Where the Moose Were”: Fort William First Nation’s Ancestral Land, Two–Eyed Seeing, and Industrial Impacts," Land, MDPI, vol. 13(12), pages 1-28, November.
    12. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.
    13. Ling-Yun He & Xiao-Feng Qi, 2021. "Environmental Courts, Environment and Employment: Evidence from China," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    14. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    15. Weicong Fu & Qunyue Liu & Cecil Konijnendijk van den Bosch & Ziru Chen & Zhipeng Zhu & Jinda Qi & Mo Wang & Emily Dang & Jianwen Dong, 2018. "Long-Term Atmospheric Visibility Trends and Their Relations to Socioeconomic Factors in Xiamen City, China," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    16. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    17. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    18. Wei Xue & Qingming Zhan & Qi Zhang & Zhonghua Wu, 2019. "Spatiotemporal Variations of Particulate and Gaseous Pollutants and Their Relations to Meteorological Parameters: The Case of Xiangyang, China," IJERPH, MDPI, vol. 17(1), pages 1-23, December.
    19. Ying Su & Chunyan Lu & Xiaoqing Lin & Lianxiu Zhong & Yibin Gao & Yifan Lei, 2020. "Analysis of Spatio-temporal Characteristics and Driving Forces of Air Quality in the Northern Coastal Comprehensive Economic Zone, China," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    20. Yang, Aoxi & Wang, Yahui, 2023. "Transition of household cooking energy in China since the 1980s," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:22:y:2025:i:2:p:167-:d:1577738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.