IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i21p7795-d434275.html
   My bibliography  Save this article

Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming

Author

Listed:
  • Chin Leong Lim

    (Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore)

Abstract

The international community has recognized global warming as an impending catastrophe that poses significant threat to life on earth. In response, the signatories of the Paris Agreement (2015) have committed to limit the increase in global mean temperature to <1.5 °C from pre-industry period, which is defined as 1850–1890. Considering that the protection of human life is a central focus in the Paris Agreement, the naturally endowed properties of the human body to protect itself from environmental extremes should form the core of an integrated and multifaceted solution against global warming. Scholars believe that heat and thermoregulation played important roles in the evolution of life and continue to be a central mechanism that allows humans to explore, labor and live in extreme conditions. However, the international effort against global warming has focused primarily on protecting the environment and on the reduction of greenhouse gases by changing human behavior, industrial practices and government policies, with limited consideration given to the nature and design of the human thermoregulatory system. Global warming is projected to challenge the limits of human thermoregulation, which can be enhanced by complementing innate human thermo-plasticity with the appropriate behavioral changes and technological innovations. Therefore, the primary aim of this review is to discuss the fundamental concepts and physiology of human thermoregulation as the underlying bases for human adaptation to global warming. Potential strategies to extend human tolerance against environmental heat through behavioral adaptations and technological innovations will also be discussed. An important behavioral adaptation postulated by this review is that sleep/wake cycles would gravitate towards a sub-nocturnal pattern, especially for outdoor activities, to avoid the heat in the day. Technologically, the current concept of air conditioning the space in the room would likely steer towards the concept of targeted body surface cooling. The current review was conducted using materials that were derived from PubMed search engine and the personal library of the author. The PubMed search was conducted using combinations of keywords that are related to the theme and topics in the respective sections of the review. The final set of articles selected were considered “state of the art,” based on their contributions to the strength of scientific evidence and novelty in the domain knowledge on human thermoregulation and global warming.

Suggested Citation

  • Chin Leong Lim, 2020. "Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming," IJERPH, MDPI, vol. 17(21), pages 1-34, October.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:21:p:7795-:d:434275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/21/7795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/21/7795/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    2. Jae Young Lee & Woo-Seop Lee & Kristie L. Ebi & Ho Kim, 2019. "Temperature-Related Summer Mortality Under Multiple Climate, Population, and Adaptation Scenarios," IJERPH, MDPI, vol. 16(6), pages 1-9, March.
    3. Mark O. McLinden & J. Steven Brown & Riccardo Brignoli & Andrei F. Kazakov & Piotr A. Domanski, 2017. "Limited options for low-global-warming-potential refrigerants," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    4. Tiberiu Marogel-Popa & Marius Cheţa & Marina Viorela Marcu & Cristian Ionuţ Duţă & Florin Ioraş & Stelian Alexandru Borz, 2019. "Manual Cultivation Operations in Poplar Stands: A Characterization of Job Difficulty and Risks of Health Impairment," IJERPH, MDPI, vol. 16(11), pages 1-16, May.
    5. Peter W. Tait & Elizabeth G. Hanna, 2015. "A Conceptual Framework for Planning Systemic Human Adaptation to Global Warming," IJERPH, MDPI, vol. 12(9), pages 1-23, August.
    6. Yanjun Wang & Anqian Wang & Jianqing Zhai & Hui Tao & Tong Jiang & Buda Su & Jun Yang & Guojie Wang & Qiyong Liu & Chao Gao & Zbigniew W. Kundzewicz & Mingjin Zhan & Zhiqiang Feng & Thomas Fischer, 2019. "Tens of thousands additional deaths annually in cities of China between 1.5 °C and 2.0 °C warming," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    7. Ana Maria Vicedo-Cabrera & Yuming Guo & Francesco Sera & Veronika Huber & Carl-Friedrich Schleussner & Dann Mitchell & Shilu Tong & Micheline de Sousa Zanotti Stagliorio Coelho & Paulo Hilario Nascime, 2018. "Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios," Climatic Change, Springer, vol. 150(3), pages 391-402, October.
    8. Daniela Rus & Michael T. Tolley, 2015. "Design, fabrication and control of soft robots," Nature, Nature, vol. 521(7553), pages 467-475, May.
    9. Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
    10. Elizabeth G. Hanna & Peter W. Tait, 2015. "Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming," IJERPH, MDPI, vol. 12(7), pages 1-41, July.
    11. Thornton, P.K. & van de Steeg, J. & Notenbaert, A. & Herrero, M., 2009. "The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know," Agricultural Systems, Elsevier, vol. 101(3), pages 113-127, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tereza Pohanková & Vilém Pechanec, 2024. "Assessing the Cooling Potential of Vegetation in a Central European Rural Landscape: A Local Study," Land, MDPI, vol. 13(10), pages 1-18, October.
    2. Kong, Xiangfei & Fu, Ying & Yuan, Jianjuan, 2023. "Novel flexible phase change materials with high emissivity, low thermal conductivity and mechanically robust for thermal management in outdoor environment," Applied Energy, Elsevier, vol. 348(C).
    3. Luca Tomassini & Massimo Lancia & Angela Gambelunghe & Abdellah Zahar & Niccolò Pini & Cristiana Gambelunghe, 2024. "Exploring the Nexus of Climate Change and Substance Abuse: A Scoping Review," IJERPH, MDPI, vol. 21(7), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.
    2. Marie-Eve Levasseur & Patrick Poulin & Céline Campagna & Jean-Marc Leclerc, 2017. "Integrated Management of Residential Indoor Air Quality: A Call for Stakeholders in a Changing Climate," IJERPH, MDPI, vol. 14(12), pages 1-14, November.
    3. Raimi, Daniel, 2021. "Effects of Climate Change on Heat- and Cold-Related Mortality: A Literature Review to Inform Updated Estimates of the Social Cost of Carbon," RFF Working Paper Series 21-12, Resources for the Future.
    4. Falchetta, Giacomo & Mistry, Malcolm N., 2021. "The role of residential air circulation and cooling demand for electrification planning: Implications of climate change in sub-Saharan Africa," Energy Economics, Elsevier, vol. 99(C).
    5. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    6. M. Melissa Rojas-Downing & A. Pouyan Nejadhashemi & Mohammad Abouali & Fariborz Daneshvar & Sabah Anwer Dawood Al Masraf & Matthew R. Herman & Timothy Harrigan & Zhen Zhang, 2018. "Pasture diversification to combat climate change impacts on grazing dairy production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 405-431, March.
    7. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    8. Sarah Ann Wheeler & Céline Nauges & Alec Zuo, 2021. "How stable are Australian farmers’ climate change risk perceptions? New evidence of the feedback loop between risk perceptions and behaviour," Post-Print hal-04670841, HAL.
    9. Shijing Zhang & Yingxiang Liu & Jie Deng & Xiang Gao & Jing Li & Weiyi Wang & Mingxin Xun & Xuefeng Ma & Qingbing Chang & Junkao Liu & Weishan Chen & Jie Zhao, 2023. "Piezo robotic hand for motion manipulation from micro to macro," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
    11. Lenyeletse V. Basupi & Claire H. Quinn & Andrew J. Dougill, 2017. "Pastoralism and Land Tenure Transformation in Sub-Saharan Africa: Conflicting Policies and Priorities in Ngamiland, Botswana," Land, MDPI, vol. 6(4), pages 1-17, December.
    12. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    13. Amir Souhail & Passakorn vassakosol, 2018. "Low Cost Soft Robotic Grippers For Reliable Grasping," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(4), pages 88-95, November.
    14. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    15. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    16. Shikuku, Kelvin M. & Valdivia, Roberto O. & Paul, Birthe K. & Mwongera, Caroline & Winowiecki, Leigh & Läderach, Peter & Herrero, Mario & Silvestri, Silvia, 2017. "Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach," Agricultural Systems, Elsevier, vol. 151(C), pages 204-216.
    17. Little, Peter D. & McPeak, John G., 2014. "Resilience and pastoralism in Africa South of the Sahara:," IFPRI book chapters, in: Fan, Shenggen & Pandya-Lorch, Rajul & Yosef, Sivan (ed.), 2013 Global Food Policy Report, chapter 9, International Food Policy Research Institute (IFPRI).
    18. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    19. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    20. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:21:p:7795-:d:434275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.