IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i20p7531-d429128.html
   My bibliography  Save this article

Klebsiella and Enterobacter Isolated from Mangrove Wetland Soils in Thailand and Their Application in Biological Decolorization of Textile Reactive Dyes

Author

Listed:
  • Aiya Chantarasiri

    (Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand)

Abstract

Wastewater released from textile and dye-based industries is one of the major concerns for human and aquatic beings. Biological decolorization using ligninolytic bacteria has been considered as an effective and alternative approach for the treatment of dyeing wastewater. This study aimed to assess the isolation, characterization and application of soil bacteria isolated from mangrove wetlands in Thailand. Four active bacteria were genetically identified and designated as Klebsiella pneumoniae strain RY10302, Enterobacter sp. strain RY10402, Enterobacter sp. strain RY11902 and Enterobacter sp. strain RY11903. They were observed for ligninolytic activity and decolorization of nine reactive dyes under experimental conditions. All bacteria exhibited strong decolorization efficiency within 72 h of incubation at 0.01% ( w / v ) of reactive dyes. The decolorization percentage varied from 20% (C.I. Reactive Red 195 decolorized by K. pneumoniae strain RY10302) to 92% (C.I. Reactive Blue 194 decolorized by Enterobacter sp. strain RY11902) in the case of bacterial monoculture, whereas the decolorization percentage for a mixed culture of four bacteria varied from 58% (C.I. Reactive Blue 19) to 94% (C.I. Reactive Black 1). These findings confer the possibility of using these bacteria for the biological decolorization of dyeing wastewater.

Suggested Citation

  • Aiya Chantarasiri, 2020. "Klebsiella and Enterobacter Isolated from Mangrove Wetland Soils in Thailand and Their Application in Biological Decolorization of Textile Reactive Dyes," IJERPH, MDPI, vol. 17(20), pages 1-21, October.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:20:p:7531-:d:429128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/20/7531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/20/7531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinhao Luo & Chen Liang & Yongyou Hu, 2019. "Comparison of Different Enhanced Coagulation Methods for Azo Dye Removal from Wastewater," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
    2. Anis Barati & Aziz Ghaderpour & Li Lee Chew & Chui Wei Bong & Kwai Lin Thong & Ving Ching Chong & Lay Ching Chai, 2016. "Isolation and Characterization of Aquatic-Borne Klebsiella pneumoniae from Tropical Estuaries in Malaysia," IJERPH, MDPI, vol. 13(4), pages 1-16, April.
    3. Rahul Datta & Aditi Kelkar & Divyashri Baraniya & Ali Molaei & Amitava Moulick & Ram Swaroop Meena & Pavel Formanek, 2017. "Enzymatic Degradation of Lignin in Soil: A Review," Sustainability, MDPI, vol. 9(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zainab Naseem & Muhammad Naveed & Hafiz Naeem Asghar & Mansoor Hameed, 2022. "Metal Resistant Enterobacter cloacae ZA14 Enhanced Seedling Vigor and Metal Tolerance through Improved Growth, Physiology and Antioxidants in Tomato ( Solanum lycopersicum ) Irrigated with Textile Eff," Sustainability, MDPI, vol. 14(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    2. Wudneh Ayele Shewa & Martha Dagnew, 2020. "Revisiting Chemically Enhanced Primary Treatment of Wastewater: A Review," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    3. Rahul Datta & Divyashri Baraniya & Yong-Feng Wang & Aditi Kelkar & Ram Swaroop Meena & Gulab Singh Yadav & Maria Teresa Ceccherini & Pavel Formanek, 2017. "Amino Acid: Its Dual Role as Nutrient and Scavenger of Free Radicals in Soil," Sustainability, MDPI, vol. 9(8), pages 1-9, August.
    4. Intan Nazirah Mohammad & Clarence M. Ongkudon & Mailin Misson, 2020. "Physicochemical Properties and Lignin Degradation of Thermal-Pretreated Oil Palm Empty Fruit Bunch," Energies, MDPI, vol. 13(22), pages 1-12, November.
    5. Shuai Wang & Nan Wang & Junping Xu & Xi Zhang & Sen Dou, 2019. "Contribution of Microbial Residues Obtained from Lignin and Cellulose on Humus Formation," Sustainability, MDPI, vol. 11(17), pages 1-12, September.
    6. Zainab Naseem & Muhammad Naveed & Hafiz Naeem Asghar & Mansoor Hameed, 2022. "Metal Resistant Enterobacter cloacae ZA14 Enhanced Seedling Vigor and Metal Tolerance through Improved Growth, Physiology and Antioxidants in Tomato ( Solanum lycopersicum ) Irrigated with Textile Eff," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    7. Ewa Okoniewska, 2021. "Removal of Selected Dyes on Activated Carbons," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    8. Chio, Chonlong & Sain, Mohini & Qin, Wensheng, 2019. "Lignin utilization: A review of lignin depolymerization from various aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 232-249.
    9. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    10. Ogechukwu Bose Chukwuma & Mohd Rafatullah & Husnul Azan Tajarudin & Norli Ismail, 2021. "A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products," IJERPH, MDPI, vol. 18(11), pages 1-27, June.
    11. Ogechukwu Bose Chukwuma & Mohd Rafatullah & Husnul Azan Tajarudin & Norli Ismail, 2020. "Lignocellulolytic Enzymes in Biotechnological and Industrial Processes: A Review," Sustainability, MDPI, vol. 12(18), pages 1-31, September.
    12. Nhung T. Tuyet Hoang & D. Duc Nguyen, 2023. "Improving the Degradation Kinetics of Industrial Dyes with Chitosan/TiO 2 /Glycerol Films for the Sustainable Recovery of Chitosan from Waste Streams," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    13. Ram Swaroop Meena & Sandeep Kumar & Rahul Datta & Rattan Lal & Vinod Vijayakumar & Martin Brtnicky & Mahaveer Prasad Sharma & Gulab Singh Yadav & Manoj Kumar Jhariya & Chetan Kumar Jangir & Shamina Im, 2020. "Impact of Agrochemicals on Soil Microbiota and Management: A Review," Land, MDPI, vol. 9(2), pages 1-21, January.
    14. Marie Spohn & Sumanta Bagchi & Lori A. Biederman & Elizabeth T. Borer & Kari Anne Bråthen & Miguel N. Bugalho & Maria C. Caldeira & Jane A. Catford & Scott L. Collins & Nico Eisenhauer & Nicole Hagena, 2023. "The positive effect of plant diversity on soil carbon depends on climate," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Sara Yasipourtehrani & Vladimir Strezov & Tao Kan & Tim Evans, 2021. "Investigation of Dye Removal Capability of Blast Furnace Slag in Wastewater Treatment," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    16. Kishan Mahmud & Dinesh Panday & Anaas Mergoum & Ali Missaoui, 2021. "Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    17. Theodore Danso Marfo & Rahul Datta & Valerie Vranová & Adam Ekielski, 2019. "Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition," Agriculture, MDPI, vol. 9(10), pages 1-10, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:20:p:7531-:d:429128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.